Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hijacking a biosynthetic pathway yields a glycosyltransferase inhibitor within cells

Abstract

Glycosyltransferases are ubiquitous enzymes that catalyze the assembly of glycoconjugates throughout all kingdoms of nature. A long-standing problem is the rational design of probes that can be used to manipulate glycosyltransferase activity in cells and tissues. Here we describe the rational design and synthesis of a nucleotide sugar analog that inhibits, with high potency both in vitro and in cells, the human glycosyltransferase responsible for the reversible post-translational modification of nucleocytoplasmic proteins with O-linked N-acetylglucosamine residues (O-GlcNAc). We show that the enzymes of the hexosamine biosynthetic pathway can transform, both in vitro and in cells, a synthetic carbohydrate precursor into the nucleotide sugar analog. Treatment of cells with the precursor lowers O-GlcNAc in a targeted manner with a single-digit micromolar EC50. This approach to inhibition of glycosyltransferases should be applicable to other members of this superfamily of enzymes and enable their manipulation in a biological setting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mammalian HBP, GlcNAc salvage pathway and structures of compounds.
Figure 2: Ac-5SGlcNAc acts in cells to lower global O-GlcNAc in a dose- and time-dependent manner.
Figure 3: Evaluation of effects of Ac-5SGlcNAc treatment of cells on O-GlcNAc modification state of nup62.
Figure 4: Metabolic feeding of Ac-5SGlcNAz to cells decreases O-GlcNAc, but chemoselective ligation shows 5SGlcNAz does not accumulate on proteins.
Figure 5: Ac-5SGlcNAc is converted in cells to generate intracellular UDP-5SGlcNAc, causing perturbations in UDP-sugar nucleotide pools.
Figure 6: Treatment of cells with Ac-5SGlcNAc has no apparent effect on global N-glycosylation or N-glycosylation of a secreted IgG as evaluated by lectin blot analysis.

Similar content being viewed by others

References

  1. Varki, A. & Lowe, J.B. Biological roles of glycans. in Essentials of Glycobiology (eds. Varki, A. et al.) (CSH Press, 2009).

  2. Platt, F.M., Neises, G.R., Dwek, R.A. & Butters, T.D. N-butyldeoxynojirimycin is a novel inhibitor of glycolipid biosynthesis. J. Biol. Chem. 269, 8362–8365 (1994).

    CAS  PubMed  Google Scholar 

  3. Lowe, J.B. Glycan-dependent leukocyte adhesion and recruitment in inflammation. Curr. Opin. Cell Biol. 15, 531–538 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Granovsky, M. et al. Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat. Med. 6, 306–312 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Hart, G.W., Housley, M.P. & Slawson, C. Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446, 1017–1022 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Roquemore, E.P., Chevrier, M.R., Cotter, R.J. & Hart, G.W. Dynamic O-GlcNAcylation of the small heat shock protein α B-crystallin. Biochemistry 35, 3578–3586 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Yang, X. et al. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 451, 964–969 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Sinclair, D.A. et al. Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Proc. Natl. Acad. Sci. USA 106, 13427–13432 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zachara, N.E. et al. Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J. Biol. Chem. 279, 30133–30142 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Slawson, C. et al. Perturbations in O-linked β-N-acetylglucosamine protein modification cause severe defects in mitotic progression and cytokinesis. J. Biol. Chem. 280, 32944–32956 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Caldwell, S.A. et al. Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1. Oncogene 29, 2831–2842 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Yuzwa, S.A. et al. A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat. Chem. Biol. 4, 483–490 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, F., Iqbal, K., Grundke-Iqbal, I., Hart, G.W. & Gong, C.X. O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease. Proc. Natl. Acad. Sci. USA 101, 10804–10809 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, J., Marchase, R.B. & Chatham, J.C. Increased O-GlcNAc levels during reperfusion lead to improved functional recovery and reduced calpain proteolysis. Am. J. Physiol. Heart Circ. Physiol. 293, H1391–H1399 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Ngoh, G.A., Hamid, T., Prabhu, S.D. & Jones, S.P. O-GlcNAc signaling attenuates ER stress-induced cardiomyocyte death. Am. J. Physiol. Heart Circ. Physiol. 297, H1711–H1719 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lyons, S.D., Sant, M.E. & Christopherson, R.I. Cytotoxic mechanisms of glutamine antagonists in mouse L1210 leukemia. J. Biol. Chem. 265, 11377–11381 (1990).

    CAS  PubMed  Google Scholar 

  17. Lenzen, S. & Panten, U. Alloxan: history and mechanism of action. Diabetologia 31, 337–342 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Gross, B.J., Kraybill, B.C. & Walker, S. Discovery of O-GlcNAc transferase inhibitors. J. Am. Chem. Soc. 127, 14588–14589 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Ngoh, G.A., Watson, L.J., Facundo, H.T., Dillmann, W. & Jones, S.P. Non-canonical glycosyltransferase modulates post-hypoxic cardiac myocyte death and mitochondrial permeability transition. J. Mol. Cell. Cardiol. 45, 313–325 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Keppler, O.T., Horstkorte, R., Pawlita, M., Schmidt, C. & Reutter, W. Biochemical engineering of the N-acyl side chain of sialic acid: biological implications. Glycobiology 11, 11R–18R (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Agard, N.J. & Bertozzi, C.R. Chemical approaches to perturb, profile, and perceive glycans. Acc. Chem. Res. 42, 788–797 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jones, M.B. et al. Characterization of the cellular uptake and metabolic conversion of acetylated N-acetylmannosamine (ManNAc) analogues to sialic acids. Biotechnol. Bioeng. 85, 394–405 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Vocadlo, D.J., Hang, H.C., Kim, E.J., Hanover, J.A. & Bertozzi, C.R. A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc. Natl. Acad. Sci. USA 100, 9116–9121 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lairson, L.L., Henrissat, B., Davies, G.J. & Withers, S.G. Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77, 521–555 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Yuasa, H., Izumi, M. & Hashimoto, H. Thiasugars: potential glycosidase inhibitors. Curr. Top. Med. Chem. 9, 76–86 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Tsuruta, O., Shinohara, G., Yuasa, H. & Hashimoto, H. UDP-N-acetyl-5-thio-galactosamine is a substrate of lactose synthase. Bioorg. Med. Chem. Lett. 7, 2523–2526 (1997).

    Article  CAS  Google Scholar 

  27. Tsuruta, O. et al. Synthesis of GDP-5-thiosugars and their use as glycosyl donor substrates for glycosyltransferases. J. Org. Chem. 68, 6400–6406 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Offen, W. et al. Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J. 25, 1396–1405 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lambert, J.B. & Wharry, S.M. Conformational-analysis of 5-thio-D-glucose. J. Org. Chem. 46, 3193–3196 (1981).

    Article  CAS  Google Scholar 

  30. Zhao, G., Guan, W., Cai, L. & Wang, P.G. Enzymatic route to preparative-scale synthesis of UDP-GlcNAc/GalNAc, their analogues and GDP-fucose. Nat. Protoc. 5, 636–646 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tanahashi, E., Kiso, M. & Hasegawa, A. A facile synthesis of 2-acetamido-2-deoxy-5-thio-D-glucopyranose. Carbohydr. Res. 117, 304–308 (1983).

    Article  CAS  Google Scholar 

  32. Davis, L.I. & Blobel, G. Nuclear pore complex contains a family of glycoproteins that includes p62: glycosylation through a previously unidentified cellular pathway. Proc. Natl. Acad. Sci. USA 84, 7552–7556 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lubas, W.A., Smith, M., Starr, C.M. & Hanover, J.A. Analysis of nuclear pore protein p62 glycosylation. Biochemistry 34, 1686–1694 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Greig, I.R., Macauley, M.S., Williams, I.H. & Vocadlo, D.J. Probing synergy between two catalytic strategies in the glycoside hydrolase O-GlcNAcase using multiple linear free energy relationships. J. Am. Chem. Soc. 131, 13415–13422 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Martinez-Fleites, C. et al. Structure of an O-GlcNAc transferase homolog provides insight into intracellular glycosylation. Nat. Struct. Mol. Biol. 15, 764–765 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Khidekel, N. et al. Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nat. Chem. Biol. 3, 339–348 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. O'Donnell, N., Zachara, N.E., Hart, G.W. & Marth, J.D. Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol. Cell. Biol. 24, 1680–1690 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dennis, R.J. et al. Structure and mechanism of a bacterial β-glucosaminidase having O-GlcNAcase activity. Nat. Struct. Mol. Biol. 13, 365–371 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Csuk, R. & Glanzer, B.I. A short synthesis of 2-acetamido-2-deoxy-5-thio-D-glucose and D-mannose from 5-thio-glucal. J. Chem. Soc. Chem. Commun. 343–344 (1986).

  40. Saxon, E. & Bertozzi, C.R. Cell surface engineering by a modified Staudinger reaction. Science 287, 2007–2010 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Boehmelt, G. et al. Decreased UDP-GlcNAc levels abrogate proliferation control in EMeg32-deficient cells. EMBO J. 19, 5092–5104 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sarkar, A.K., Fritz, T.A., Taylor, W.H. & Esko, J.D. Disaccharide uptake and priming in animal cells: inhibition of sialyl Lewis X by acetylated Gal β 1→4GlcNAc β-O-naphthalenemethanol. Proc. Natl. Acad. Sci. USA 92, 3323–3327 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ralton, J.E., Milne, K.G., Guther, M.L., Field, R.A. & Ferguson, M.A. The mechanism of inhibition of glycosylphosphatidylinositol anchor biosynthesis in Trypanosoma brucei by mannosamine. J. Biol. Chem. 268, 24183–24189 (1993).

    CAS  PubMed  Google Scholar 

  44. Pesnot, T., Jorgensen, R., Palcic, M.M. & Wagner, G.K. Structural and mechanistic basis for a new mode of glycosyltransferase inhibition. Nat. Chem. Biol. 6, 321–323 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee, K.Y. et al. The hexapeptide inhibitor of Galβ1,3GalNAc-specific α2,3-sialyltransferase as a generic inhibitor of sialyltransferases. J. Biol. Chem. 277, 49341–49351 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Schneider, E.G., Nguyen, H.T. & Lennarz, W.J. The effect of tunicamycin, an inhibitor of protein glycosylation, on embryonic development in the sea urchin. J. Biol. Chem. 253, 2348–2355 (1978).

    CAS  PubMed  Google Scholar 

  47. Hinderlich, S., Berger, M., Schwarzkopf, M., Effertz, K. & Reutter, W. Molecular cloning and characterization of murine and human N-acetylglucosamine kinase. Eur. J. Biochem. 267, 3301–3308 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Mio, T., Yamada-Okabe, T., Arisawa, M. & Yamada-Okabe, H. Functional cloning and mutational analysis of the human cDNA for phosphoacetylglucosamine mutase: identification of the amino acid residues essential for the catalysis. Biochim. Biophys. Acta 1492, 369–376 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Bourgeaux, V., Piller, F. & Piller, V. Two-step enzymatic synthesis of UDP-N-acetylgalactosamine. Bioorg. Med. Chem. Lett. 15, 5459–5462 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Macauley, M.S., Stubbs, K.A. & Vocadlo, D.J. O-GlcNAcase catalyzes cleavage of thioglycosides without general acid catalysis. J. Am. Chem. Soc. 127, 17202–17203 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The plasmid encoding GNK was a gift from M. Berger (Charite Universitatsmedizin Berlin) and S. Hinderlich (University of Applied Sciences, Berlin), and the plasmid encoding AGX1 was a gift from V. Piller (Centre de Recherche Scientifique, UPR 4301). Polyclonal antibody to OGA was a gift from G. Hart (John Hopkins University). EMEG32 cells were a gift from T. Mak (University of Toronto). We thank G. Davies (University of York) for the E. coli expression construct of BtGH84. T.M.G. is a Sir Henry Wellcome postdoctoral fellow and a Michael Smith for Health Research (MSFHR) trainee award holder. D.J.V. is a scholar of MSFHR and holds a Canada Research Chair in Chemical Glycobiology. We thank the Natural Sciences and Engineering Research Council of Canada and Simon Fraser University for funding support.

Author information

Authors and Affiliations

Authors

Contributions

T.M.G. and D.J.V. designed experiments. T.M.G., W.F.Z., J.E.H., D.L.S. and L.D. carried out experiments. T.M.G., W.F.Z., D.L.S. and D.J.V. analyzed results. T.M.G. and D.J.V wrote the manuscript with input from all authors.

Corresponding author

Correspondence to David J Vocadlo.

Ethics declarations

Competing interests

Provisional patent applications covering this work have been filed.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Schemes 1–4 and Supplementary Figures 1–15 (PDF 2362 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gloster, T., Zandberg, W., Heinonen, J. et al. Hijacking a biosynthetic pathway yields a glycosyltransferase inhibitor within cells. Nat Chem Biol 7, 174–181 (2011). https://doi.org/10.1038/nchembio.520

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.520

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing