Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cytosporone B is an agonist for nuclear orphan receptor Nur77

Abstract

Nuclear orphan receptor Nur77 has important roles in many biological processes. However, a physiological ligand for Nur77 has not been identified. Here, we report that the octaketide cytosporone B (Csn-B) is a naturally occurring agonist for Nur77. Csn-B specifically binds to the ligand-binding domain of Nur77 and stimulates Nur77-dependent transactivational activity towards target genes including Nr4a1 (Nur77) itself, which contains multiple consensus response elements allowing positive autoregulation in a Csn-B–dependent manner. Csn-B also elevates blood glucose levels in fasting C57 mice, an effect that is accompanied by induction of multiple genes involved in gluconeogenesis. These biological effects were not observed in Nur77-null (Nr4a1−/−) mice, which indicates that Csn-B regulates gluconeogenesis through Nur77. Moreover, Csn-B induced apoptosis and retarded xenograft tumor growth by inducing Nur77 expression, translocating Nur77 to mitochondria to cause cytochrome c release. Thus, Csn-B may represent a promising therapeutic drug for cancers and hypoglycemia, and it may also be useful as a reagent to increase understanding of Nur77 biological function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of Csn-B as a Nur77 agonist.
Figure 2: Csn-B physically binds to the ligand binding domain of Nur77.
Figure 3: Csn-B activates Nur77 transactivational activity.
Figure 4: Csn-B mediates Nur77 autoregulation and cofactor recruitment.
Figure 5: Csn-B increases blood glucose levels and expression of gluconeogenic genes.
Figure 6: Csn-B induces apoptosis via Nur77 in BCG-823 cells.
Figure 7: Csn-B inhibits growth of cancer cells and xenograft tumors.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Giguere, V. Orphan nuclear receptors: from gene to function. Endocr. Rev. 20, 689–725 (1999).

    CAS  PubMed  Google Scholar 

  2. Winoto, A. & Littman, D.R. Nuclear hormone receptors in T lymphocytes. Cell 109 Suppl: S57–S66 (2002).

    Article  CAS  Google Scholar 

  3. Nuclear Receptors Nomenclature Committee. A unified nomenclature system for the nuclear receptor superfamily. Cell 97, 161–163 (1999).

  4. Germain, P., Staels, B., Dacquet, C., Spedding, M. & Laudet, V. Overview of nomenclature of nuclear receptors. Pharmacol. Rev. 58, 685–704 (2006).

    Article  CAS  Google Scholar 

  5. Philips, A. et al. Novel dimeric Nur77 signaling mechanism in endocrine and lymphoid cells. Mol. Cell. Biol. 17, 5946–5951 (1997).

    Article  CAS  Google Scholar 

  6. Wilson, T.E., Fahrner, T.J., Johnston, M. & Milbrandt, J. Identification of the DNA binding site for NGFI-B by genetic selection in yeast. Science 252, 1296–1300 (1991).

    Article  CAS  Google Scholar 

  7. Liu, Z.G., Smith, S.W., McLaughlin, K.A., Schwartz, L.M. & Osborne, B.A. Apoptotic signals delivered through the T-cell receptor of a T-cell hybrid require the immediate-early gene nur77. Nature 367, 281–284 (1994).

    Article  CAS  Google Scholar 

  8. Woronicz, J.D., Calnan, B., Ngo, V. & Winoto, A. Requirement for the orphan steroid receptor Nur77 in apoptosis of T-cell hybridomas. Nature 367, 277–281 (1994).

    Article  CAS  Google Scholar 

  9. Cheng, L.E., Chan, F.K., Cado, D. & Winoto, A. Functional redundancy of the Nur77 and Nor-1 orphan steroid receptors in T-cell apoptosis. EMBO J. 16, 1865–1875 (1997).

    Article  CAS  Google Scholar 

  10. Kagaya, S. et al. NR4A orphan nuclear receptor family in peripheral blood eosinophils from patients with atopic dermatitis and apoptotic eosinophils in vitro. Int. Arch. Allergy Immunol. 137 (suppl. 1): 35–44 (2005).

    Article  CAS  Google Scholar 

  11. Li, H. et al. Cytochrome c release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3. Science 289, 1159–1164 (2000).

    Article  CAS  Google Scholar 

  12. Wu, Q., Liu, S., Ye, X.F., Huang, Z.W. & Su, W.J. Dual roles of Nur77 in selective regulation of apoptosis and cell cycle by TPA and ATRA in gastric cancer cells. Carcinogenesis 23, 1583–1592 (2002).

    Article  CAS  Google Scholar 

  13. Lin, X.F. et al. RXRalpha acts as a carrier for TR3 nuclear export in a 9-cis retinoic acid-dependent manner in gastric cancer cells. J. Cell Sci. 117, 5609–5621 (2004).

    Article  CAS  Google Scholar 

  14. Pei, L. et al. NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism. Nat. Med. 12, 1048–1055 (2006).

    Article  CAS  Google Scholar 

  15. Fu, Y., Luo, L., Luo, N., Zhu, X. & Garvey, W.T. NR4A orphan nuclear receptors modulate insulin action and the glucose transport system: potential role in insulin resistance. J. Biol. Chem. 282, 31525–31533 (2007).

    Article  CAS  Google Scholar 

  16. Mangelsdorf, D.J. & Evans, R.M. The RXR heterodimers and orphan receptors. Cell 83, 841–850 (1995).

    Article  CAS  Google Scholar 

  17. Baker, K.D. et al. The Drosophila orphan nuclear receptor DHR38 mediates an atypical ecdysteroid signaling pathway. Cell 113, 731–742 (2003).

    Article  CAS  Google Scholar 

  18. Wang, Z. et al. Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature 423, 555–560 (2003).

    Article  CAS  Google Scholar 

  19. Flaig, R., Greschik, H., Peluso-Iltis, C. & Moras, D. Structural basis for the cell-specific activities of the NGFI-B and the Nurr1 ligand-binding domain. J. Biol. Chem. 280, 19250–19258 (2005).

    Article  CAS  Google Scholar 

  20. Chintharlapalli, S. et al. Activation of Nur77 by selected 1,1-Bis(3′-indolyl)-1-(p-substituted phenyl)methanes induces apoptosis through nuclear pathways. J. Biol. Chem. 280, 24903–24914 (2005).

    Article  CAS  Google Scholar 

  21. Cho, S.D. et al. Nur77 agonists induce proapoptotic genes and responses in colon cancer cells through nuclear receptor-dependent and nuclear receptor-independent pathways. Cancer Res. 67, 674–683 (2007).

    Article  CAS  Google Scholar 

  22. Brady, S.F., Wagenaar, M.M., Singh, M.P., Janso, J.E. & Clardy, J. The cytosporones, new octaketide antibiotics isolated from an endophytic fungus. Org. Lett. 2, 4043–4046 (2000).

    Article  CAS  Google Scholar 

  23. Nolte, R.T. et al. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 395, 137–143 (1998).

    Article  CAS  Google Scholar 

  24. Ray, D.W., Suen, C.S., Brass, A., Soden, J. & White, A. Structure/function of the human glucocorticoid receptor: tyrosine 735 is important for transactivation. Mol. Endocrinol. 13, 1855–1863 (1999).

    Article  CAS  Google Scholar 

  25. Agostini, M. et al. Tyrosine agonists reverse the molecular defects associated with dominant-negative mutations in human peroxisome proliferator-activated receptor gamma. Endocrinology 145, 1527–1538 (2004).

    Article  CAS  Google Scholar 

  26. Koehler, K.F., Helguero, L.A., Haldosen, L.A., Warner, M. & Gustafsson, J.A. Reflections on the discovery and significance of estrogen receptor beta. Endocr. Rev. 26, 465–478 (2005).

    Article  CAS  Google Scholar 

  27. Chen, Z.P. et al. Pure and functionally homogeneous recombinant retinoid X receptor. J. Biol. Chem. 269, 25770–25776 (1994).

    CAS  PubMed  Google Scholar 

  28. Cogan, U., Kopelman, M., Mokady, S. & Shinitzky, M. Binding affinities of retinol and related compounds to retinol binding proteins. Eur. J. Biochem. 65, 71–78 (1976).

    Article  CAS  Google Scholar 

  29. Wu, Q. et al. Modulation of retinoic acid sensitivity in lung cancer cells through dynamic balance of orphan receptors nur77 and COUP-TF and their heterodimerization. EMBO J. 16, 1656–1669 (1997).

    Article  CAS  Google Scholar 

  30. Cheskis, B.J., Karathanasis, S. & Lyttle, C.R. Estrogen receptor ligands modulate its interaction with DNA. J. Biol. Chem. 272, 11384–11391 (1997).

    Article  CAS  Google Scholar 

  31. Pavan, L. et al. Human invasive trophoblasts transformed with simian virus 40 provide a new tool to study the role of PPARgamma in cell invasion process. Carcinogenesis 24, 1325–1336 (2003).

    Article  CAS  Google Scholar 

  32. Najarian, T. et al. Preservation of neural function in the perinate by high PGE(2) levels acting via EP(2) receptors. J. Appl. Physiol. 89, 777–784 (2000).

    Article  CAS  Google Scholar 

  33. Cain, S.A. et al. Fibrillin-1 interactions with heparin. Implications for microfibril and elastic fiber assembly. J. Biol. Chem. 280, 30526–30537 (2005).

    Article  CAS  Google Scholar 

  34. Maira, M., Martens, C., Batsche, E., Gauthier, Y. & Drouin, J. Dimer-specific potentiation of NGFI-B (Nur77) transcriptional activity by the protein kinase A pathway and AF-1-dependent coactivator recruitment. Mol. Cell. Biol. 23, 763–776 (2003).

    Article  CAS  Google Scholar 

  35. Wansa, K.D., Harris, J.M. & Muscat, G.E. The activation function-1 domain of Nur77/NR4A1 mediates trans-activation, cell specificity, and coactivator recruitment. J. Biol. Chem. 277, 33001–33011 (2002).

    Article  CAS  Google Scholar 

  36. Chao, L.C. et al. Nur77 coordinately regulates expression of genes linked to glucose metabolism in skeletal muscle. Mol. Endocrinol. 21, 2152–2163 (2007).

    Article  CAS  Google Scholar 

  37. Kolluri, S.K. et al. Mitogenic effect of orphan receptor TR3 and its regulation by MEKK1 in lung cancer cells. Mol. Cell. Biol. 23, 8651–8667 (2003).

    Article  CAS  Google Scholar 

  38. Lin, B. et al. Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 116, 527–540 (2004).

    Article  CAS  Google Scholar 

  39. Wu, Q. et al. Inhibition of trans-retinoic acid-resistant human breast cancer cell growth by retinoid X receptor-selective retinoids. Mol. Cell. Biol. 17, 6598–6608 (1997).

    Article  CAS  Google Scholar 

  40. Mullican, S.E. et al. Abrogation of nuclear receptors Nr4a3 and Nr4a1 leads to development of acute myeloid leukemia. Nat. Med. 13, 730–735 (2007).

    Article  CAS  Google Scholar 

  41. Hassinen, T. & Peräkylä, M. New energy terms for reduced protein models implemented in an off-lattice force field. J. Comput. Chem. 22, 1229–1242 (2001).

    Article  CAS  Google Scholar 

  42. Morris, G.M. et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19, 1639–1662 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Safe (Institute of Biosciences and Technology, Texas A&M University Health Science Center) for the vectors of GAL4-Nur77 and GAL4-LBD. We also thank F. Chen (Cancer Research Center, Xiamen University) for help with mouse experiments. This work was supported by grants from the National Natural Science Fund of China (30630070 and 30425014 to Q.W., 30325044 to Y.S.), grants from the “973” Project of the Ministry of Science and Technology (2006CB503905 to S.-C.L., 2004CB518800 and 2007CB914402 to Q.W.) and grants from the Ministry of Education (706036 to Q.W., 306010 to Y.S. and 705030 to S.-C.L.). Q.W., Y.S. and S.-C.L. are recipients of the National Science Fund for Distinguished Young Scholars. S.-C.L. is a Cheung Kong Scholar.

Author information

Authors and Affiliations

Authors

Contributions

Q.W., Y.S. and S.-C.L. designed experiments and wrote the manuscript. S.-C.L.'s group (Q.L., S.S., S.L., Z.Y. and D.H.) performed molecular experiments; Y.S.'s group (X.D., Q.X., Z.Z., Y.H. and W.S.) performed isolation, identification and preparation of Csn-B and Csn-C; B.C.W.'s group (D.C. and Z.C.) performed molecular modeling; Q.W.'s group (Y.Z., H.C., J.L., B.Z., L.Z., G.L. and M.Z.) performed the rest of the experiments.

Corresponding authors

Correspondence to Sheng-Cai Lin, Yuemao Shen or Qiao Wu.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1–3 and Supplementary Methods (PDF 1760 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhan, Y., Du, X., Chen, H. et al. Cytosporone B is an agonist for nuclear orphan receptor Nur77. Nat Chem Biol 4, 548–556 (2008). https://doi.org/10.1038/nchembio.106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.106

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing