Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs

Abstract

Autophagy is the primary catabolic process triggered in response to starvation. Although autophagic regulation within the cytosolic compartment is well established, it is becoming clear that nuclear events also regulate the induction or repression of autophagy. Nevertheless, a thorough understanding of the mechanisms by which sequence-specific transcription factors modulate expression of genes required for autophagy is lacking. Here, we identify Foxk proteins (Foxk1 and Foxk2) as transcriptional repressors of autophagy in muscle cells and fibroblasts. Interestingly, Foxk1/2 serve to counter-balance another forkhead transcription factor, Foxo3, which induces an overlapping set of autophagic and atrophic targets in muscle. Foxk1/2 specifically recruits Sin3A–HDAC complexes to restrict acetylation of histone H4 and expression of critical autophagy genes. Remarkably, mTOR promotes the transcriptional activity of Foxk1 by facilitating nuclear entry to specifically limit basal levels of autophagy in nutrient-rich conditions. Our study highlights an ancient, conserved mechanism whereby nutritional status is interpreted by mTOR to restrict autophagy by repressing essential autophagy genes through Foxk–Sin3-mediated transcriptional control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of Foxk1 as a component of a Sin3A complex.
Figure 2: Genome-wide identification of Foxk1-binding sites at promoters and enhancers.
Figure 3: Foxk1 represses transcription of genes associated with induction of atrophy and autophagy initiation.
Figure 4: Nuclear import and export of Foxk1 is mTOR- and CRM1-dependent, respectively.
Figure 5: Starvation, through mTOR inhibition, signals the removal of Foxk1 from chromatin.
Figure 6: Foxk1 and Foxo3 are recruited to the same atrophy and autophagy genes.
Figure 7: Foxk–Sin3A complexes suppress autophagic flux in nutrient-rich conditions.
Figure 8: Model illustrating a role for Foxk1 repression of autophagy and atrophy induction.

Similar content being viewed by others

References

  1. Mizushima, N. Autophagy: process and function. Genes Dev. 21, 2861–2873 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Füllgrabe, J., Klionsky, D. J. & Joseph, B. The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat. Rev. Mol. Cell Biol. 15, 65–74 (2014).

    Article  PubMed  Google Scholar 

  3. Füllgrabe, J. et al. The histone H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy. Nature 500, 468–471 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pietrocola, F. et al. Regulation of autophagy by stress-responsive transcription factors. Semin. Cancer Biol. 23, 310–322 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Settembre, C. et al. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429–1433 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao, J. et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 6, 472–483 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Chauhan, S. et al. ZKSCAN3 is a master transcriptional repressor of autophagy. Mol. Cell 50, 16–28 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dannenberg, J-H. et al. mSin3A corepressor regulates diverse transcriptional networks governing normal and neoplastic growth and survival. Genes Dev. 19, 1581–1595 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McDonel, P., Demmers, J., Tan, D. W. M., Watt, F. & Hendrich, B. D. Sin3a is essential for the genome integrity and viability of pluripotent cells. Dev. Biol. 363, 62–73 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Van Oevelen, C. et al. The mammalian Sin3 proteins are required for muscle development and sarcomere specification. Mol. Cell. Biol. 30, 5686–5697 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cheng, J. et al. A role for H3K4 monomethylation in gene repression and partitioning of chromatin readers. Mol. Cell 53, 979–992 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang, Q. et al. The winged-helix/forkhead protein myocyte nuclear factor beta (MNF-β) forms a co-repressor complex with mammalian sin3B. Biochem. J. 345, 335–343 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shi, X., Seldin, D. C. & Garry, D. J. Foxk1 recruits the Sds3 complex and represses gene expression in myogenic progenitors. Biochem. J. 446, 349–357 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Shi, X. & Garry, D. J. Sin3 interacts with Foxk1 and regulates myogenic progenitors. Mol. Cell. Biochem. 366, 251–258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Garry, D. J. et al. Myogenic stem cell function is impaired in mice lacking the forkhead/winged helix protein MNF. Proc. Natl Acad. Sci. USA 97, 5416–5421 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meeson, A. P. et al. Cellular and molecular regulation of skeletal muscle side population cells. Stem Cells 22, 1305–1320 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Blum, R., Vethantham, V., Bowman, C., Rudnicki, M. & Dynlacht, B. D. Genome-wide identification of enhancers in skeletal muscle: the role of MyoD1. Genes Dev. 26, 2763–2779 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sandri, M. et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117, 399–412 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gomes, M. D., Lecker, S. H., Jagoe, R. T., Navon, A. & Goldberg, A. L. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc. Natl Acad. Sci. USA 98, 14440–14445 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lecker, S. H. et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J. 18, 39–51 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Sacheck, J. M. et al. Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. FASEB J. 21, 140–155 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Bodine, S. C. et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294, 1704–1708 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Young, A. R.J. et al. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J. Cell Sci. 119, 3888–3900 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Ganley, I. G. et al. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 284, 12297–12305 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chan, E. Y. W., Longatti, A., McKnight, N. C. & Tooze, S. A. Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol. Cell. Biol. 29, 157–171 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Hara, T. et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 181, 497–510 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Russell, R. C. et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 15, 741–750 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Kudo, N. et al. Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc. Natl Acad. Sci. USA 96, 9112–9117 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pankiv, S. et al. Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies. J. Biol. Chem. 285, 5941–5953 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Thakar, K., Karaca, S., Port, S. A., Urlaub, H. & Kehlenbach, R. H. Identification of CRM1-dependent nuclear export cargos using quantitative mass spectrometry. Mol. Cell. Proteomics 12, 664–678 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Hsu, P. P. et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317–1322 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rigbolt, K. T. et al. Characterization of early autophagy signaling by quantitative phosphoproteomics. Autophagy 10, 1–16 (2014).

    Article  Google Scholar 

  34. Harder, L. M., Bunkenborg, J. & Andersen, J. S. Inducing autophagy: a comparative phosphoproteomic study of the cellular response to ammonia and rapamycin. Autophagy 10, 17–33 (2014).

    Article  Google Scholar 

  35. Yu, Y. et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322–1326 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Miller, K. M. et al. Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nat. Struct. Mol. Biol. 17, 1144–1151 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guan, J-S. et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459, 55–60 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yamaguchi, T. et al. Histone deacetylases 1 and 2 act in concert to promote the G1-to-S progression. Genes Dev. 24, 455–469 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dovey, O. M., Foster, C. T. & Cowley, S. M. Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation. Proc. Natl Acad. Sci. USA 107, 8242–8247 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Van Oevelen, C. et al. A role for mammalian Sin3 in permanent gene silencing. Mol. Cell 32, 359–370 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, X. F. et al. The Rpd3 core complex is a chromatin stabilization module. Curr. Biol. 22, 56–63 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Mammucari, C. et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 6, 458–471 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Webb, A. E. et al. FOXO3 shares common targets with ASCL1 genome-wide and inhibits ASCL1-dependent neurogenesis. Cell Rep. 4, 477–491 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445–544 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mizushima, N., Yoshimori, T. & Levine, B. Methods in mammalian autophagy research. Cell 140, 313–326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hailey, D. W. et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141, 656–667 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bartholomew, C. R. et al. Ume6 transcription factor is part of a signaling cascade that regulates autophagy. Proc. Natl Acad. Sci. USA 109, 11206–11210 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Erbay, E. & Chen, J. The mammalian target of rapamycin regulates C2C12 myogenesis via a kinase-independent mechanism. J. Biol. Chem. 276, 36079–36082 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Yoon, M-S. & Chen, J. Distinct amino acid-sensing mTOR pathways regulate skeletal myogenesis. Mol. Biol. Cell 24, 3754–3763 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gammoh, N. et al. Role of autophagy in histone deacetylase inhibitor-induced apoptotic and nonapoptotic cell death. Proc. Natl Acad. Sci. USA 109, 6561–6565 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Robert, T. et al. HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature 471, 74–79 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shao, Y., Gao, Z., Marks, P. A. & Jiang, X. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc. Natl Acad. Sci. 101, 18030–18035 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Scherz-Shouval, R. et al. p53-dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation. Proc. Natl Acad. Sci. USA 107, 18511–18516 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Marks, P. A. & Breslow, R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat. Biotechnol. 25, 84–90 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Kim, J., Kundu, M., Viollet, B. & Guan, K-L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132–141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nazio, F. et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat. Cell Biol. 15, 406–416 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Hassig, C. A., Fleischer, T. C., Billin, A. N., Schreiber, S. L. & Ayer, D. E. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89, 341–347 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, Y. et al. SAP30, a novel protein conserved between human and yeast, is a component of a histone deacetylase complex. Mol. Cell 1, 1021–1031 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Fleischer, T. C., Yun, U. J. & Ayer, D. E. Identification and characterization of three new components of the mSin3A corepressor complex. Mol. Cell. Biol. 23, 3456–3467 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lopez-Bigas, N. et al. Genome-wide analysis of the H3K4 histone demethylase RBP2 reveals a transcriptional program controlling differentiation. Mol. Cell 31, 520–530 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Asp, P. et al. Genome-wide remodeling of the epigenetic landscape during myogenic differentiation. Proc. Natl Acad. Sci. USA 108, E158 (2011).

    Article  Google Scholar 

  62. Micsinai, M. et al. Picking ChIP-seq peak detectors for analyzing chromatin modification experiments. Nucleic Acids Res. 40, e70 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bailey, T. L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank W. Lane for mass spectrometric analysis; A. Heguy, E. Venturini and O. Aminova of the New York University Langone Medical Center (NYULMC) Genome Technology Center for ChIP-seq and RNA-seq library sequencing; F. Liang, C. Petzold and K. Dancel of the NYULMC OCS Microscopy Core for the preparation of samples and imaging for TEM; D. Garry (University of Minnesota, USA) for Foxk1 cDNA; Y. Zhang (Harvard Medical School, USA), D. Reinberg (New York University, USA), E. Benevolenskaya (University of Illinois at Chicago, USA) and A. Brunet (Stanford University, USA) for their generous gifts of antibodies. This work used computing resources at the High Performance Computing Facility of the NYULMC Center for Health Informatics and Bioinformatics. This work was supported by NIH grants 2R01CA077245-16 and 2R01GM067132-09A1 to B.D.D. and F30AG040894 to C.J.B.

Author information

Authors and Affiliations

Authors

Contributions

C.J.B. performed the experiments and bioinformatics analyses. D.E.A. provided Sin3A and Sds3 antibodies. C.J.B. and B.D.D. conceived the project, designed the experiments, analysed the data and wrote the manuscript. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Brian David Dynlacht.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Foxk1 interacts with Sin3A, but not Sin3B, complexes in a DNA-independent manner.

Immunoprecipitates from myoblast nuclear fractions were incubated with and washed with 100 μg/mL ethidium bromide (EtBr) to prevent bridging of proteins by DNA.

Supplementary Figure 2 Foxk1 is recruited to forkhead motifs at promoters and enhancers.

(a) siRNA-mediated depletion of Foxk1 against two distinct target sequences showed significant reductions in Foxk1 recruitment to Foxk1-bound loci. Tnnc1 and Ttn are negative control loci. (b) Co-enrichment of ETS, Runx1, Sox, CREB1, and CCAAT-box motifs at Foxk1 peaks. (c) Single-nucleotide polymorphisms (SNP, red) in functional forkhead motifs abrogate Foxk1 binding. Sequences from our ChIP-seq experiments, which were derived from C2C12 myoblasts of the murine C3H strain, were compared to the reference mm9 assembly, which is sequenced from the C57/BL6 strain. A handful of promoters with a homozygous SNP (colored in red) in the forkhead motif were selected for Foxk1 binding at those loci in myoblasts isolated from either a C3H or C57/BL6 strain. The Tef promoter had an unaltered motif in either strain and retains robust Foxk1 binding, but the promoters of Atpbd4, Bbc3, and Usp48 showed minimal Foxk1 binding due to the presence of an altered forkhead motif. Atp6a1l, negative control region not bound by Foxk1. (d) Foxk1 localized to both promoter and enhancer regions, and Foxk1 recruited Sin3A only to promoters. Data represent mean + SEM from n = three independent experiments. siNS, control knock-down.

Supplementary Figure 3 Foxk1 and Foxk2 redundantly, yet independently, repress autophagy.

(a) Starvation induces the removal of Foxk2 from chromatin at the promoters of autophagy genes and Fbxo32. (b) Foxk2 is transported from the nucleus to the cytoplasm during starvation. (c) Control (siNS) cells or cells depleted of either Foxk1 or Foxk2 were grown in nutrient-rich or starvation medium in the presence or absence of chloroquine (CQ) for 90 min. LC3 and α-tubulin immunoblots correspond to the same gels. Data are presented as mean + SEM from n = three independent experiments. siNS, control knock-down.

Supplementary Figure 4 Foxk1 depletion deregulates autophagy genes.

(a) RNA-seq of non-starved, starved, and Foxk1-depleted myoblasts. siNS, control knock-down. (b) Confirmatory Foxk1 knockdown shows deregulation of autophagy genes using a different siRNA than that used in Fig. 3e. Data represent mean + SEM from n = three independent experiments. siNS, control knock-down.

Supplementary Figure 5 Foxk1 is a phospho-protein whose levels are not reduced during starvation.

(a) Whole cell lysates from cells starved for the indicated times. Quantification from three independent experiments is shown at right. Data are presented as mean + SEM from n = three independent experiments (two-tailed t-test). (b) Foxk1 was dephosphorylated with λ protein phosphatase, and inhibition of phosphatase activity prevented Foxk1 dephosphorylation. De-phosphorylated Foxk1 retained its interaction with Sin3A. Foxk1 immunoprecipitates from myoblast nuclear and cytoplasmic extracts were treated with λ protein phosphatase with or without phosphatase inhibitors, washed, and analyzed by SDS-PAGE and immunoblotting.

Supplementary Figure 6 Starvation leads to histone hyper-acetylation and chromatin de-compaction at sites previously bound by Foxk1-Sin3A complexes.

(a,b) qChIP shows that loss of Foxk1 and Sin3A is associated with (a) a reduction in H4 levels and (b) increased acetylation of H4 at autophagy genes during starvation. Corresponding IgG controls are shown in Fig. 5a. Data represent n = three independent biological replicates from separate dishes and lysate preparations and are presented as mean + SEM. p < 0.05; p < 0.01; p < 0.001; NS, not significant (two-tailed t-test).

Supplementary Figure 7 Foxk1 loss increased the number and size of autophagic vacuoles.

Autophagic vacuoles (AV, white arrows) in control siNS knock-down cells are generally 500–600 nm in size and contain cytoplasmic materials such as mitochondria (black arrowheads), endoplasmic reticulum, and electron-dense ribosomes. Foxk1-depleted cells exhibit an increased number of multi-lamellar bodies (white arrowheads) and AVs. The AVs contain an abundance of degrading electron-dense ribosomes and membranes, which are likely to come from mitochondria and endoplasmic reticulum. Bar, 1 μm.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1425 kb)

Supplementary Table 1

Supplementary Information (XLS 52 kb)

Supplementary Table 2

Supplementary Information (XLS 1551 kb)

Supplementary Table 3

Supplementary Information (XLS 43 kb)

Supplementary Table 4

Supplementary Information (XLS 5142 kb)

Supplementary Table 5

Supplementary Information (XLS 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bowman, C., Ayer, D. & Dynlacht, B. Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs. Nat Cell Biol 16, 1202–1214 (2014). https://doi.org/10.1038/ncb3062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3062

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing