Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A direct role for Met endocytosis in tumorigenesis

Abstract

Compartmentalization of signals generated by receptor tyrosine kinase (RTK) endocytosis has emerged as a major determinant of various cell functions. Here, using tumour-associated Met-activating mutations, we demonstrate a direct link between endocytosis and tumorigenicity. Met mutants exhibit increased endocytosis/recycling activity and decreased levels of degradation, leading to accumulation on endosomes, activation of the GTPase Rac1, loss of actin stress fibres and increased levels of cell migration. Blocking endocytosis inhibited mutants’ anchorage-independent growth, in vivo tumorigenesis and metastasis while maintaining their activation. One mutant resistant to inhibition by a Met-specific tyrosine kinase inhibitor was sensitive to endocytosis inhibition. Thus, oncogenicity of Met mutants results not only from activation but also from their altered endocytic trafficking, indicating that endosomal signalling may be a crucial mechanism regulating RTK-dependent tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Active Met mutants accumulate in intracellular compartments.
Figure 2: Met mutants shuttle between the plasma membrane and endosomes and are protected from degradation.
Figure 3: Endocytosis of Met mutant is dependent on clathrin, dynamin, c-Cbl and Grb2.
Figure 4: Met mutants require endocytosis to control actin cytoskeleton remodelling.
Figure 5: Met mutants induce Rac1 activation, which is dependent on endocytosis.
Figure 6: Met mutants require endocytosis to stimulate cell migration.
Figure 7: Blocking endocytosis reduces in vitro tumour transformation stimulated by Met mutants.
Figure 8: Blocking endocytosis reduces in vivo tumour transformation stimulated by Met mutants.

Similar content being viewed by others

References

  1. Teis, D., Wunderlich, W. & Huber, L. A. Localization of the MP1-MAPK scaffold complex to endosomes is mediated by p14 and required for signal transduction. Dev. Cell 3, 803–814 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Palamidessi, A. et al. Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell 134, 135–147 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Schenck, A. et al. The endosomal protein Appl1 mediates Akt substrate specificity and cell survival in vertebrate development. Cell 133, 486–497 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. McPherson, P. S., Kay, B. K. & Hussain, N. K. Signaling on the endocytic pathway. Traffic 2, 375–384 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Kermorgant, S., Zicha, D. & Parker, P. J. PKC controls HGF-dependent c-Met traffic, signalling and cell migration. EMBO J. 23, 3721–3734 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miaczynska, M., Pelkmans, L. & Zerial, M. Not just a sink: endosomes in control of signal transduction. Curr. Opin. Cell Biol. 16, 400–406 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Kermorgant, S. & Parker, P. J. Receptor trafficking controls weak signal delivery: a strategy used by c-Met for STAT3 nuclear accumulation. J. Cell Biol. 182, 855–863 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sorkin, A., McClure, M., Huang, F. & Carter, R. Interaction of EGF receptor and grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy. Curr. Biol. 10, 1395–1398 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Vieira, A. V., Lamaze, C. & Schmid, S. L. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274, 2086–2089 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Howe, C. L., Valletta, J. S., Rusnak, A. S. & Mobley, W. C. NGF signaling from clathrin-coated vesicles: evidence that signaling endosomes serve as a platform for the Ras-MAPK pathway. Neuron 32, 801–814 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Le Roy, C. & Wrana, J. L. Signaling and endocytosis: a team effort for cell migration. Dev. Cell 9, 167–168 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Polo, S. & Di Fiore, P. P. Endocytosis conducts the cell signaling orchestra. Cell 124, 897–900 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. von Zastrow, M. & Sorkin, A. Signaling on the endocytic pathway. Curr. Opin. Cell Biol. 19, 436–445 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kermorgant, S. & Parker, P. J. c-Met signalling: spatio-temporal decisions. Cell Cycle 4, 352–355 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Gould, G. W. & Lippincott-Schwartz, J. New roles for endosomes: from vesicular carriers to multi-purpose platforms. Nat. Rev. Mol. Cell Biol. 10, 287–292 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jekely, G., Sung, H. H., Luque, C. M. & Rorth, P. Regulators of endocytosis maintain localized receptor tyrosine kinase signaling in guided migration. Dev. Cell 9, 197–207 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, Y., Pennock, S., Chen, X. & Wang, Z. Endosomal signaling of epidermal growth factor receptor stimulates signal transduction pathways leading to cell survival. Mol. Cell Biol. 22, 7279–7290 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kholodenko, B. N. Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol. 7, 165–176 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lanzetti, L. & Di Fiore, P. P. Endocytosis and cancer: an ‘insider’ network with dangerous liaisons. Traffic 9, 2011–2021 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Mosesson, Y., Mills, G. B. & Yarden, Y. Derailed endocytosis: an emerging feature of cancer. Nat. Rev. Cancer 8, 835–850 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Rao, D. S. et al. Altered receptor trafficking in Huntingtin Interacting Protein 1-transformed cells. Cancer Cell 3, 471–482 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Comoglio, P. M. Pathway specificity for Met signalling. Nat. Cell Biol. 3, E161–E162 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Birchmeier, C., Birchmeier, W., Gherardi, E. & Vande Woude, G. F. Met, metastasis, motility and more. Nat. Rev. Mol. Cell Biol. 4, 915–925 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Christensen, J. G., Burrows, J. & Salgia, R. c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett. 225, 1–26 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Schmidt, L. et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat. Genet. 16, 68–73 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Jeffers, M. et al. Activating mutations for the met tyrosine kinase receptor in human cancer. Proc. Natl Acad. Sci. USA 94, 11445–11450 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bardelli, A. et al. Uncoupling signal transducers from oncogenic MET mutants abrogates cell transformation and inhibits invasive growth. Proc. Natl Acad. Sci. USA 95, 14379–14383 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Graveel, C. R., London, C. A. & Vande Woude, G. F. A mouse model of activating met mutations. Cell Cycle 4, 518–520 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Gampel, A. et al. VEGF regulates the mobilisation of VEGFR-2/KDR from an intracellular endothelial storage compartment. Blood 108, 2624–2631 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Kermorgant, S., Zicha, D. & Parker, P. J. Protein kinase C controls microtubule-based traffic but not proteasomal degradation of c-Met. J. Biol. Chem. 278, 28921–28929 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Kirchhausen, T., Macia, E. & Pelish, H. E. Use of dynasore, the small molecule inhibitor of dynamin, in the regulation of endocytosis. Methods Enzymol. 438, 77–93 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hill, T. A. et al. Inhibition of dynamin mediated endocytosis by the dynoles—synthesis and functional activity of a family of indoles. J. Med. Chem. 52, 3762–3773 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Li, N., Lorinczi, M., Ireton, K. & Elferink, L. A. Specific Grb2-mediated interactions regulate clathrin-dependent endocytosis of the cMet-tyrosine kinase. J. Biol. Chem. 282, 16764–16775 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Sorkin, A. & von Zastrow, M. Endocytosis and signalling: intertwining molecular networks. Nat. Rev. Mol. Cell Biol. 10, 609–622 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shtiegman, K. et al. Defective ubiquitinylation of EGFR mutants of lung cancer confers prolonged signaling. Oncogene 26, 6968–6978 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Nakaigawa, N., Weirich, G., Schmidt, L. & Zbar, B. Tumorigenesis mediated by MET mutant M1268T is inhibited by dominant-negative Src. Oncogene 19, 2996–3002 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Ponzetto, C. et al. Specific uncoupling of GRB2 from the Met receptor. Differential effects on transformation and motility. J. Biol. Chem. 271, 14119–14123 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Egan, S. E. et al. Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363, 45–51 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Heasman, S. J. & Ridley, A. J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol. 9, 690–701 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Miller, M. et al. Structural basis of oncogenic activation caused by point mutations in the kinase domain of the MET proto-oncogene: modeling studies. Proteins 44, 32–43 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Xiang, Z., Kreisel, F., Cain, J., Colson, A. & Tomasson, M. H. Neoplasia driven by mutant c-KIT is mediated by intracellular, not plasma membrane, receptor signalling. Mol. Cell Biol. 27, 267–282 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Runeberg-Roos, P., Virtanen, H. & Saarma, M. RET(MEN 2B) is active in the endoplasmic reticulum before reaching the cell surface. Oncogene 26, 7909–7915 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Lievens, P. M., Mutinelli, C., Baynes, D. & Liboi, E. The kinase activity of fibroblast growth factor receptor 3 with activation loop mutations affects receptor trafficking and signaling. J. Biol. Chem. 279, 43254–43260 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Choudhary, C. et al. Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol. Cell 36, 326–339 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Schmidt-Arras, D. et al. Anchoring of FLT3 in the endoplasmic reticulum alters signaling quality. Blood 113, 3568–3576 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Scita, G. & Di Fiore, P. P. The endocytic matrix. Nature 463, 464–473.

  47. Muller, P. A. et al. Mutant p53 drives invasion by promoting integrin recycling. Cell 139, 1327–1341 (2009).

    Article  PubMed  Google Scholar 

  48. Grandal, M. V. et al. EGFRvIII escapes down-regulation due to impaired internalization and sorting to lysosomes. Carcinogenesis 28, 1408–1417 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Peschard, P. et al. Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol. Cell 8, 995–1004 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Honegger, A. M., Schmidt, A., Ullrich, A. & Schlessinger, J. Separate endocytic pathways of kinase-defective and -active EGF receptor mutants expressed in same cells. J. Cell Biol. 110, 1541–1548 (1990).

    Article  CAS  PubMed  Google Scholar 

  51. Huang, F., Goh, L. K. & Sorkin, A. EGF receptor ubiquitination is not necessary for its internalization. Proc. Natl Acad. Sci. USA 104, 16904–16909 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, Q., Villeneuve, G. & Wang, Z. Control of epidermal growth factor receptor endocytosis by receptor dimerization, rather than receptor kinase activation. EMBO Rep. 6, 942–948 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pellinen, T. & Ivaska, J. Integrin traffic. J. Cell Sci. 119, 3723–3731 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Assaker, G., Ramel, D., Wculek, S. K., Gonzalez-Gaitan, M. & Emery, G. Spatial restriction of receptor tyrosine kinase activity through a polarized endocytic cycle controls border cell migration. Proc. Natl Acad. Sci. USA 107, 22558–22563 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Murphy, J. E., Padilla, B. E., Hasdemir, B., Cottrell, G. S. & Bunnett, N. W. Endosomes: a legitimate platform for the signaling train. Proc. Natl Acad. Sci. USA 106, 17615–17622 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kong-Beltran, M. et al. Somatic mutations lead to an oncogenic deletion of met in lung cancer. Cancer Res. 66, 283–289 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Cernuda-Morollon, E., Millan, J., Shipman, M., Marelli-Berg, F. M. & Ridley, A. J. Rac activation by the T-cell receptor inhibits T cell migration. PLoS One 5, e12393 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G. Vande Woude for his gift of the NIH3T3 cell lines expressing murine Met, O. Joffre, V. Carrière, S. Vallath and J. Hulit for their intellectual/technical contributions, A.J. Ridley and S. Heasman for the gift of the GST–PAK-PBD, P. J. Parker and S. Tooze for critically reading the manuscript, J. Camonis, the UK Medical Research Council, and Barts and The London Charitable Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.J. carried out and analysed most experiments using the NIH3T3 cells both in vitro and in vivo, including characterization of the cell lines, western blots, immunofluorescence analyses, Transwell migration, soft-agar assays, flow cytometry analysis, immunoprecipitation and most separation procedures investigating internalization, degradation and recycling. R.B. did most RNAi knockdowns and transfections followed by the subsequent migration assays, soft-agar assays, western blots and immunofluorescence analysis. R.B. carried out transfection and characterization of hM1268T and hM1268T/N1358H mutants in NIH3T3 cells. L.M. carried out Rac1 activation assays following Grb2 RNAi and PHA treatment, established the detection of active Rac and helped with immunofluorescence analyses and analysis of hM1268T and hM1268T/N1358H cells. V.C. designed and developed the hM1268T and hM1268T/N1358H mutants. S.K. conceived the project, designed experiments, interpreted the data and carried out some of the immunofluorescence and confocal microscopy analyses. I.R.H. advised on the design of the in vivo experiments, trained C.J. and carried out inoculations of tumour cells. S.K. and C.J. wrote the manuscript, with additional input from I.R.H.

Corresponding author

Correspondence to Stéphanie Kermorgant.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1350 kb)

Supplementary Information

Supplementary Table 1 (XLS 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joffre, C., Barrow, R., Ménard, L. et al. A direct role for Met endocytosis in tumorigenesis. Nat Cell Biol 13, 827–837 (2011). https://doi.org/10.1038/ncb2257

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2257

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer