Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bmi1 is essential in Twist1-induced epithelial–mesenchymal transition

An Author Correction to this article was published on 04 March 2019

Abstract

The epithelial–mesenchymal transition (EMT), one of the main mechanisms underlying development of cancer metastasis, induces stem-like properties in epithelial cells. Bmi1 is a polycomb-group protein that maintains self-renewal, and is frequently overexpressed in human cancers. Here, we show the direct regulation of BMI1 by the EMT regulator, Twist1. Furthermore, Twist1 and Bmi1 were mutually essential to promote EMT and tumour-initiating capability. Twist1 and Bmi1 act cooperatively to repress expression of both E-cadherin and p16INK4a. In patients with head and neck cancers, increased levels of both Twist1 and Bmi1 correlated with downregulation of E-cadherin and p16INK4a, and was associated with the worst prognosis. These results suggest that Twist1-induced EMT and tumour-initiating capability in cancer cells occurs through chromatin remodelling, which leads to unfavourable clinical outcomes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overexpression of TWIST1 upregulates BMI1 expression, and HNSCC cells expressing putative tumour-initiating cell markers overexpress TWIST1 and BMI1.
Figure 2: BMI1 expression is directly regulated by Twist1.
Figure 3: Overexpression of HIF-1α, TWIST1 or BMI1 promotes tumour-initiating capability of FaDu cells.
Figure 4: Twist1 and Bmi1 are mutually essential for maintaining EMT and tumour-initiating capability, and overexpression of BMI1 induces EMT.
Figure 5: The Bmi1-containing polycomb repressive complex binds to the E-cadherin promoter, p16INK4a promoter and exon 1α.
Figure 6: Co-occupancy of Twist1, Bmi1 and EZH2 on the E-cadherin promoter, p16INK4a promoter and exon 1α.
Figure 7: Twist1 and Bmi1 cooperatively repress E-cadherin transcription.
Figure 8: Clinical significance of Twist1 and Bmi1 in HNSCC patients and a proposed model of Twist1- and Bmi1-mediated suppression of E-cadherin and p16INK4a.

Similar content being viewed by others

Accession codes

Accessions

ArrayExpress

Gene Expression Omnibus

References

  1. Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial–mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Mani, S. A. et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Morel, A. P. et al. Generation of breast cancer stem cells through epithelial–mesenchymal transition. PLoS ONE 3, e2888 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Valk-Lingbeek, M. E., Bruggeman, S. W. & van Lohuizen, M. Stem cells and cancer: the polycomb connection. Cell 118, 409–418 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Widschwendter, M. et al. Epigenetic stem cell signature in cancer. Nat. Genet. 39, 157–158 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Molofsky, A. V. et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425, 962–967 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Iwama, A. et al. Enhanced self-renewal of haematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity 21, 843–851 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Sangiorgi, E. & Capecchi, M. R. Bmi1 is expressed in vivo in intestinal stem cells. Nat. Genet. 40, 915–920 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jacobs, J. J., Kieboom, K., Marino, S., Depinho, R. & van Lohuizen, M. The oncogene and polycomb-group gene Bmi1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Bruggeman, S. W. et al. Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice. Genes & Dev. 19, 1438–1443 (2005).

    Article  CAS  Google Scholar 

  11. Czermin, B. et al. Drosophila Enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal polycomb sites. Cell 111, 185–196 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Müller, J. et al. Histone methyltransferase activity of a Drosophila polycomb group repressor complex. Cell 111, 197–208 (2002).

    Article  PubMed  Google Scholar 

  13. Min, J., Zhang, Y. & Xu, R. M. Structural basis for specific binding of polycomb chromodomain to histone H3 methylated at Lys 27. Genes & Dev. 17, 1823–1828 (2003).

    Article  CAS  Google Scholar 

  14. Bracken, A. P. et al. The polycomb group proteins bind throughout the INK4A–ARF locus and are disassociated in senescent cells. Genes & Dev. 21, 525–530 (2007).

    Article  CAS  Google Scholar 

  15. Jacobs, J. J. et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 13, 2678–2690 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Leung, C. et al. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature 428, 337–341 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Prince, M. E. et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl Acad. Sci. USA. 104, 973–978 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chiba, T. et al. The polycomb gene product BMI1 contributes to the maintenance of tumor-initiating side population cells in hepatocellular carcinoma. Cancer Res. 68, 7742–7749 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Seiwert, T. Y. & Cohen, E. E. State-of-the-art management of locally advanced head and neck cancer. Br. J. Cancer 92, 1341–1348 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Janssen, H. L., Haustermans, K. M., Balm, A. J. & Begg, A. C. Hypoxia in head and neck cancer: how much, how important? Head Neck 27, 622–638 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Hoogsteen, I. J., Marres, H. A., Bussink, J., van der Kogel, A. J. & Kaanders, J. H. Tumor microenvironment in head and neck squamous cell carcinomas: predictive value and clinical relevance of hypoxic markers. A review. Head Neck 29, 591–604 (2007).

    Article  PubMed  Google Scholar 

  22. Furlong, E. E., Andersen, E. C., Null, B., White, K. P. & Scott, M. P. Patterns of gene expression during Drosophila mesoderm development. Science 293, 1629–1633 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927–939 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Yang, M. H. et al. Direct regulation of TWIST by HIF-1α promotes metastasis. Nat. Cell Biol. 10, 295–305 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Keith, B. & Simon, M. C. Hypoxia-inducible factors, stem cells and cancer. Cell 129, 465–472 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, Y. C. et al. Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochem. Biophys. Res. Commun. 385, 307–313 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Huang, L. E., Gu, J., Schau, M. & Bunn, H. F. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin–proteasome pathway. Proc. Natl Acad. Sci. USA. 95, 7987–7992 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vermeulen, L. et al. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc. Natl Acad. Sci. USA. 105, 13427–13432 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cao, Q. et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 27, 7274–7284 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tamura, G. et al. E-Cadherin gene promoter hypermethylation in primary human gastric carcinomas. J. Natl Cancer Inst. 92, 569–573 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Peinado, H., Ballestar, E., Esteller, M. & Cano, A. Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol. Cell Biol. 24, 306–319 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hou, Z. et al. The LIM protein AJUBA recruits protein arginine methyltransferase 5 to mediate SNAIL-dependent transcriptional repression. Mol. Cell Biol. 28, 3198–3207 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Herranz, N. et al. Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol. Cell Biol. 28, 4772–4781 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wellner, U. et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat. Cell Biol. 11, 1487–95 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Yang, M. H. & Wu, K. J. TWIST activated by hypoxia inducible factor-1 (HIF-1): implication in metastasis and development. Cell Cycle 7, 2090–2096 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Li, J. et al. Oncoprotein Bmi-1 renders apoptotic resistance to glioma cells through activation of the IKK-nuclear factor-κB pathway. Am. J. Pathol. 176, 699–709 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vormittag, L. et al. Co-expression of Bmi-1 and podoplanin predicts overall survival in patients with squamous cell carcinoma of the head and neck treated with radio(chemo)therapy. Int. J. Radiat. Oncol. Biol. Phys. 73, 913–918 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Gustafsson, M. V. et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev. Cell 9, 617–628 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Timmerman, L. A. et al. Notch promotes epithelial–mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 18, 99–115 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Androutsellis-Theotokis, A. et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442, 823–826 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Huang, C. H. et al. Regulation of membrane-type 4 matrix metalloproteinase (MT4-MMP) by SLUG contributes to hypoxia-mediated metastasis. Neoplasia 11, 1371–1382 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang, M. H. et al. Increased NBS1 expression is a marker of aggressive head and neck cancer and overexpression of NBS1 contributes to transformation. Clin. Cancer Res. 12, 507–515 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Ginestier, C. et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1, 555–567 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang, T. S. et al. Functional network reconstruction reveals somatic stemness genetic maps and dedifferentiation-like transcriptome reprogramming induced by GATA2. Stem Cells 26, 1186–1201 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, H. W. et al. Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat. Genet. 36, 687–693 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Birnie, R. et al. Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions. Genome Biol. 9, R83 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Yang, M. H. et al. Overexpression of NBS1 induces epithelial–mesenchymal transition and co-expression of NBS1 and Snail predicts metastasis of head and neck cancer. Oncogene 26, 1459–1467 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Ainbinder, E., Amir-Zilberstein, L., Yamaguchi, Y., Handa, H. & Dikstein, R. Elongation inhibition by DRB sensitivity-inducing factor is regulated by the A20 promoter via a novel negative element and NF-κB. Mol. Cell Biol. 24, 2444–2454 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kang, M. K. et al. Elevated Bmi-1 expression is associated with dysplastic cell transformation during oral carcinogenesis and is required for cancer cell replication and survival. Br. J. Cancer 96, 126–133 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Foschini, M. P. et al. E-cadherin loss and Delta Np73L expression in oral squamous cell carcinomas showing aggressive behavior. Head Neck 30, 1475–1482 (2008).

    Article  PubMed  Google Scholar 

  51. Kumar, B. et al. EGFR, p16, HPV Titer, Bcl-xL and p53, sex, and smoking as indicators of response to therapy and survival in oropharyngeal cancer. J. Clin. Oncol. 26, 3128–3137 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank M. C. Hung (M. D. Anderson Cancer Center) for critical comments on the manuscript. We thank L. E. Huang (University of Utah) for pHA-HIF1α(ΔODD) plasmid. We are grateful to T.Y. Chou and W.Y. Li of the Department of Pathology, Taipei Veterans General Hospital for providing advice on IHC analysis. This work was supported in part by National Science Council grants to M.H.Y. (96-2314-B-075-013 and 97-2314-B-010-003) and K.J.W.(97-2320-B-010-029), National Research Program for Genomic Medicine grants to K.J.W (DOH98-TD-G-111-027 and DOH99-TD-G-111-024); Taipei Veterans General Hospital grants to M.H.Y (VGH 98-C1-050; 98-ER2-008, 99-C1-077 and 99-ER2-007) and K.J.W (99-ER2-009), grants from Ministry of Education, Aim for the Top University Plan to M.H.Y (98A-C-T510 and 99A-C-T509) and to K.J.W (99A-C-T508), National Health Research Institutes grants to K.J.W (NHRI-EX-98-9611BI and NHRI-EX-99-9931BI) and a grant from Department of Health, Center of Excellence for Cancer Research at Taipei Veterans General Hospital (DOH99-TD-C-111-007) to M.H.Y.

Author information

Authors and Affiliations

Authors

Contributions

M.H.Y., D.S.S.H. and K.J.W. conceived and designed the experiments. M.H.Y., D.S.S.H., H.J.W., H.Y.L. and W.H.Y. performed the experiments with the assistance of C.H.H for in vivo work. H.W.W. performed the bioinformatics analysis. M.H.Y., D.S.S.H. and K.J.W. analysed the data. M.H.Y. and K.J.W. wrote the paper with the assistance of O.S.K.L. and H.W.W. The treatment and sample collection of head-and-neck cancer patients were performed by S.Y.K., S.K.T., S.Y.C., C.H.T. and M.H.Y.

Corresponding authors

Correspondence to Muh-Hwa Yang or Kou-Juey Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2858 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, MH., Hsu, DS., Wang, HW. et al. Bmi1 is essential in Twist1-induced epithelial–mesenchymal transition. Nat Cell Biol 12, 982–992 (2010). https://doi.org/10.1038/ncb2099

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2099

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer