Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression

Abstract

Proper control of entry into and progression through mitosis is essential for normal cell proliferation and the maintenance of genome stability1,2,3,4. The mammalian mitotic kinase Polo-like kinase 1 (Plk1) is involved in multiple stages of mitosis5. Here we report that Forkhead Box M1 (FoxM1), a substrate of Plk1 (refs 6, 7, 8), controls a transcriptional programme that mediates Plk1-dependent regulation of cell-cycle progression. The carboxy-terminal domain of FoxM1 binds Plk1, and phosphorylation of two key residues in this domain by Cdk1 is essential for Plk1–FoxM1 interaction. Formation of the Plk1–FoxM1 complex allows for direct phosphorylation of FoxM1 by Plk1 at G2/M and the subsequent activation of FoxM1 activity, which is required for expression of key mitotic regulators, including Plk1 itself. Thus, Plk1-dependent regulation of FoxM1 activity provides a positive-feedback loop ensuring tight regulation of transcriptional networks essential for orderly mitotic progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plk1 interacts with FoxM1 in vitro and in vivo.
Figure 2: Plk1 phosphorylates FoxM1 in vitro and in vivo.
Figure 3: Plk1 activates FoxM1 transcriptional activity.
Figure 4: Plk1-dependent phosphorylation of FoxM1 is required for expression of the G2/M transcriptional programme and orderly mitotic progression in vivo.

Similar content being viewed by others

References

  1. Nigg, E. A. Mitotic kinases as regulators of cell division and its checkpoints. Nature Rev. Mol. Cell Biol. 2, 21–32 (2001).

    Article  CAS  Google Scholar 

  2. Norbury, C. & Nurse, P. Animal cell cycles and their control. Annu. Rev. Biochem. 61, 441–70 (1992).

    Article  CAS  Google Scholar 

  3. Pines, J. & Rieder, C. L. Re-staging mitosis: a contemporary view of mitotic progression. Nature Cell Biol. 3, E3–6 (2001).

    Article  CAS  Google Scholar 

  4. Murray, A. W. Recycling the cell cycle: cyclins revisited. Cell 116, 221–34 (2004).

    Article  CAS  Google Scholar 

  5. Barr, F. A., Sillje, H. H. & Nigg, E. A. Polo-like kinases and the orchestration of cell division. Nature Rev. Mol. Cell Biol. 5, 429–40 (2004).

    Article  CAS  Google Scholar 

  6. Laoukili, J. et al. FoxM1 is required for execution of the mitotic programme and chromosome stability. Nature Cell Biol. 7, 126–36 (2005).

    Article  CAS  Google Scholar 

  7. Major, M. L., Lepe, R. & Costa, R. H. Forkhead box M1B transcriptional activity requires binding of Cdk–cyclin complexes for phosphorylation-dependent recruitment of p300/CBP coactivators. Mol. Cell Biol. 24, 2649–61 (2004).

    Article  CAS  Google Scholar 

  8. Wang, I. C. et al. Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2–Cks1) ubiquitin ligase. Mol. Cell Biol. 25, 10875–94 (2005).

    Article  CAS  Google Scholar 

  9. Anderson, M. et al. Plo1(+) regulates gene transcription at the M-G(1) interval during the fission yeast mitotic cell cycle. EMBO J. 21, 5745–55 (2002).

    Article  CAS  Google Scholar 

  10. Cho, R. J. et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2, 65–73 (1998).

    Article  CAS  Google Scholar 

  11. Darieva, Z. et al. Polo kinase controls cell-cycle-dependent transcription by targeting a coactivator protein. Nature 444, 494–8 (2006).

    Article  CAS  Google Scholar 

  12. Watanabe, N. et al. M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta–TrCP. Proc. Natl Acad. Sci. USA 101, 4419–24 (2004).

    Article  CAS  Google Scholar 

  13. Toyoshima-Morimoto, F., Taniguchi, E. & Nishida, E. Plk1 promotes nuclear translocation of human Cdc25C during prophase. EMBO Rep. 3, 341–8 (2002).

    Article  CAS  Google Scholar 

  14. Casenghi, M. et al. Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation. Dev. Cell 5, 113–25 (2003).

    Article  CAS  Google Scholar 

  15. Hansen, D. V., Loktev, A. V., Ban, K. H. & Jackson, P. K. Plk1 regulates activation of the anaphase promoting complex by phosphorylating and triggering SCFβTrCP-dependent destruction of the APC Inhibitor Emi1. Mol. Biol. Cell. 15, 5623–34 (2004).

    Article  CAS  Google Scholar 

  16. Neef, R. et al. Phosphorylation of mitotic kinesin-like protein 2 by polo-like kinase 1 is required for cytokinesis. J. Cell Biol. 162, 863–75 (2003).

    Article  CAS  Google Scholar 

  17. Zhou, T., Aumais, J. P., Liu, X., Yu-Lee, L. Y. & Erikson, R. L. A role for Plk1 phosphorylation of NudC in cytokinesis. Dev. Cell 5, 127–38 (2003).

    Article  CAS  Google Scholar 

  18. Wonsey, D. R. & Follettie, M. T. Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe. Cancer Res. 65, 5181–9 (2005).

    Article  CAS  Google Scholar 

  19. Leung, T. W. et al. Over-expression of FoxM1 stimulates cyclin B1 expression. FEBS Lett. 507, 59–66 (2001).

    Article  CAS  Google Scholar 

  20. Jang, Y. J., Lin, C. Y., Ma, S. & Erikson, R. L. Functional studies on the role of the C-terminal domain of mammalian polo-like kinase. Proc. Natl Acad. Sci. USA 99, 1984–9 (2002).

    Article  CAS  Google Scholar 

  21. Seong, Y. S. et al. A spindle checkpoint arrest and a cytokinesis failure by the dominant-negative polo-box domain of Plk1 in U-2 OS cells. J. Biol. Chem. 277, 32282–93 (2002).

    Article  CAS  Google Scholar 

  22. Elia, A. E. et al. The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain. Cell 115, 83–95 (2003).

    Article  CAS  Google Scholar 

  23. Lowery, D. M., Lim, D. & Yaffe, M. B. Structure and function of Polo-like kinases. Oncogene 24, 248–59 (2005).

    Article  CAS  Google Scholar 

  24. Elia, A. E., Cantley, L. C. & Yaffe, M. B. Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates. Science 299, 1228–31 (2003).

    Article  CAS  Google Scholar 

  25. Gumireddy, K. et al. ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell 7, 275–86 (2005).

    Article  CAS  Google Scholar 

  26. Yarm, F. R. Plk phosphorylation regulates the microtubule-stabilizing protein TCTP. Mol. Cell Biol. 22, 6209–21 (2002).

    Article  CAS  Google Scholar 

  27. Nakajima, H., Toyoshima-Morimoto, F., Taniguchi, E. & Nishida, E. Identification of a consensus motif for Plk (Polo-like kinase) phosphorylation reveals Myt1 as a Plk1 substrate. J. Biol. Chem. 278, 25277–80 (2003).

    Article  CAS  Google Scholar 

  28. Sherr, C. J. & McCormick, F. The RB and p53 pathways in cancer. Cancer Cell 2, 103–12 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for extensive discussions with R.H. Medema and J. Laoukili and their input. We thank H.M. Thompson for editing the manuscript. Mass spectrometry analysis was performed by Taplin Biological Mass Spectrometry Facility at Harvard University. This work was supported in part by grants from the National Institutes of Health (NIH RO1 CA113381 to JC), Mayo SPORE P50 (CA116201 project no. 1 to J.C.) and the T.J. Martell Foundation (to D.J.T.). J.C. is a recipient of an Era of Hope Scholars award from DOD. Z.F. is a recipient of a Ruth L. Kirschstein NRSA individual Fellowship from NIH.

Author information

Authors and Affiliations

Authors

Contributions

Z.F. performed most of experiments, analysed the data and wrote the paper; L.M. and J.M.V. analysed the time-lapse imaging data; J.H. performed the experiments shown in Fig. S2a and b; W.W. and H. L. synthesized ON01910; Z.F. and J.C. designed the experiments; J.C. and D.J. T. supervised the study and revised the paper.

Corresponding authors

Correspondence to Donald J. Tindall or Junjie Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5 and Supplementary Discussion (PDF 1128 kb)

Supplementary Information

Supplementary Movie 1 (AVI 317 kb)

Supplementary Information

Supplementary Movie 2 (AVI 376 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Z., Malureanu, L., Huang, J. et al. Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression. Nat Cell Biol 10, 1076–1082 (2008). https://doi.org/10.1038/ncb1767

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1767

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing