Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

CUL4–DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation

Abstract

The CUL4–DDB1–ROC1 ubiquitin E3 ligase regulates cell-cycle progression, replication and DNA damage response1,2,3,4. However, the substrate-specific adaptors of this ligase remain uncharacterized. Here, we show that CUL4–DDB1 complexes interact with multiple WD40-repeat proteins (WDRs) including TLE1-3, WDR5, L2DTL (also known as CDT2) and the Polycomb-group protein EED (also known as ESC). WDR5 and EED are core components of histone methylation complexes that are essential for histone H3 methylation and epigenetic control at K4 or K9 and K27, respectively5,6,7, whereas L2DTL regulates CDT1 proteolysis after DNA damage through CUL4–DDB1 (ref. 8). We found that CUL4A–DDB1 interacts with H3 methylated mononucleosomes and peptides. Inactivation of either CUL4 or DDB1 impairs these histone modifications. However, loss of WDR5 specifically affects histone H3 methylation at K4 but not CDT1 degradation, whereas inactivation of L2DTL prevents CDT1 degradation but not histone methylation. Our studies suggest that CUL4–DDB1 ligases use WDR proteins as molecular adaptors for substrate recognition, and modulate multiple biological processes through ubiquitin-dependent proteolysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isolation of various WDR proteins that interact with CUL4B.
Figure 2: WDR proteins interact with the CUL4–DDB1 complexes.
Figure 3: Endogenous WDR proteins interact with the CUL4–DDB1 complexes.
Figure 4: L2DTL, but not other WDR proteins, specifically targets CDT1 for proteolysis in response to DNA damage.
Figure 5: CUL4–DDB1 associates with histone H3 methylated at K4, K9 and K27 and regulates H3 methylation in vivo.

Similar content being viewed by others

References

  1. Petroski, M. D. & Deshaies, R. J. Function and regulation of cullin–RING ubiquitin ligases. Nature Rev. Mol. Cell Biol. 6, 9–20 (2005).

    Article  CAS  Google Scholar 

  2. Zhong, W., Feng, H., Santiago, F. E. & Kipreos, E. T. CUL-4 ubiquitin ligase maintains genome stability by restraining DNA-replication licensing. Nature 423, 885–889 (2003).

    Article  CAS  Google Scholar 

  3. Higa, L. A., Mihaylov, I. S., Banks, D. P., Zheng, J. & Zhang, H. Radiation-mediated proteolysis of CDT1 by CUL4–ROC1 and CSN complexes constitutes a new checkpoint. Nature Cell Biol. 5, 1008–1015 (2003).

    Article  CAS  Google Scholar 

  4. Higa, L. A. et al. Involvement of CUL4 Ubiquitin E3 ligases in Regulating CDK Inhibitors Dacapo/p27(Kip1) and Cyclin E Degradation. Cell Cycle 5, 71–77 (2006).

    Article  CAS  Google Scholar 

  5. Sims, R. J., 3rd, Nishioka, K. & Reinberg, D. Histone lysine methylation: a signature for chromatin function. Trends Genet. 19, 629–639 (2003).

    Article  CAS  Google Scholar 

  6. Craig, J. M. Heterochromatin — many flavours, common themes. Bioessays 27, 17–28 (2005).

    Article  CAS  Google Scholar 

  7. Wysocka, J. et al. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121, 859–872 (2005).

    Article  CAS  Google Scholar 

  8. Higa, L. A. et al. L2DTL/CDT2 Interacts with the CUL4/DDB1 Complex and PCNA and Regulates CDT1 Proteolysis in Response to DNA Damage. Cell Cycle 5, 1675–1680 (2006).

    Article  CAS  Google Scholar 

  9. Liu, C. et al. Transactivation of Schizosaccharomyces pombe cdt2+ stimulates a Pcu4-Ddb1-CSN ubiquitin ligase. EMBO J. 24, 3940–3951 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Hu, J., McCall, C. M., Ohta, T. & Xiong, Y. Targeted ubiquitination of CDT1 by the DDB1-CUL4A–ROC1 ligase in response to DNA damage. Nature Cell Biol. 6, 1003–1009 (2004).

    Article  CAS  Google Scholar 

  11. Groisman, R. et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113, 357–367 (2003).

    Article  CAS  Google Scholar 

  12. Groisman, R. et al. CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome. Genes Dev. 20, 1429–1434 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, Q. E., Zhu, Q., Wani, G., Chen, J. & Wani, A. A. UV radiation-induced XPC translocation within chromatin is mediated by damaged-DNA binding protein, DDB2. Carcinogenesis 25, 1033–1043 (2004).

    Article  CAS  Google Scholar 

  14. Smith, T. F., Gaitatzes, C., Saxena, K. & Neer, E. J. The WD repeat: a common architecture for diverse functions. Trends Biochem. Sci. 24, 181–185 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Neer, E. J., Schmidt, C. J., Nambudripad, R. & Smith, T. F. The ancient regulatory-protein family of WD-repeat proteins. Nature 371, 297–300 (1994).

    Article  CAS  Google Scholar 

  16. Shiyanov, P., Nag, A. & Raychaudhuri, P. Cullin 4A associates with the UV-damaged DNA-binding protein DDB. J. Biol. Chem. 274, 35309–35312 (1999).

    Article  CAS  Google Scholar 

  17. Couture, J. F., Collazo, E. & Trievel, R. C. Molecular recognition of histone H3 by the WD40 protein WDR5. Nature Struct. Mol. Biol. 13, 698–703 (2006).

    Article  CAS  Google Scholar 

  18. Jennings, B. H. et al. Molecular recognition of transcriptional repressor motifs by the WD domain of the Groucho/TLE corepressor. Mol. Cell 22, 645–655 (2006).

    Article  CAS  Google Scholar 

  19. Denisenko, O., Shnyreva, M., Suzuki, H. & Bomsztyk, K. Point mutations in the WD40 domain of Eed block its interaction with Ezh2. Mol. Cell Biol. 18, 5634–5642 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Ruthenburg, A. J. et al. Histone H3 recognition and presentation by the WDR5 module of the MLL1 complex. Nature Struct. Mol. Biol. 13, 704–712 (2006).

    Article  CAS  Google Scholar 

  21. Dou, Y. et al. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 121, 873–885 (2005).

    Article  CAS  Google Scholar 

  22. Scacheri, P. C. et al. Genome-wide analysis of menin binding provides insights into MEN1 tumorigenesis. PLoS Genet. 2, e51 (2006).

    Article  PubMed  Google Scholar 

  23. Zou, L., Cortez, D. & Elledge, S. J. Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev. 16, 198–208 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Czermin, B. et al. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111, 185–196 (2002).

    Article  CAS  Google Scholar 

  25. Tie, F., Prasad-Sinha, J., Birve, A., Rasmuson-Lestander, A. & Harte, P. J. A 1-megadalton ESC/E(Z) complex from Drosophila that contains polycomblike and RPD3. Mol. Cell Biol. 23, 3352–3362 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Cao, R. & Zhang, Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr. Opin. Genet. Dev. 14, 155–164 (2004).

    Article  CAS  Google Scholar 

  27. Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  Google Scholar 

  29. Li, D. & Roberts, R. WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell Mol. Life Sci. 58, 2085–2097 (2001).

    Article  CAS  Google Scholar 

  30. Jia, S., Kobayashi, R. & Grewal, S. I. Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferase to assemble heterochromatin. Nature Cell Biol. 7, 1007–1013 (2005).

    Article  CAS  Google Scholar 

  31. Angers, S. et al. Molecular architecture and assembly of the DDB1–CUL4A ubiquitin ligase machinery. Nature 443, 590–593 (2006).

    CAS  Google Scholar 

  32. Jin, J., Arias, E. E., Chen J., Harper, J. W. & Walter, J. C. A family of diverse Cul4–Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol. Cell 23, 709–721 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from National Institutes of Health to H.S. (CA77695) and H.Z. (CA72878 and CA98955). H.Z. was also supported in part by an US Army grant (W81XWH-04-1-0230). H.S. and H.Z. would like to thank the members of the Sun and Zhang laboratories for discussions, R.K. for mass spectrometry, and T.Y and J. Guan for sequence alignments. The 293 suspension cells were from the Cell Culture Centre (Cellex Sciences, Minneapolis, MN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2 and S3 (PDF 113 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higa, L., Wu, M., Ye, T. et al. CUL4–DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat Cell Biol 8, 1277–1283 (2006). https://doi.org/10.1038/ncb1490

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1490

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing