Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG

Abstract

Autophagy, the degradation of cytoplasmic components, is an evolutionarily conserved homeostatic process involved in environmental adaptation, lifespan determination and tumour development. The tumor suppressor Beclin1 is part of the PI(3) kinase class III (PI(3)KC3) lipid-kinase complex that induces autophagy. The autophagic activity of the Beclin1–PI(3)KC3 complex, however, is suppressed by Bcl-2. Here, we report the identification of a novel coiled–coil UV irradiation resistance-associated gene (UVRAG) as a positive regulator of the Beclin1–PI(3)KC3 complex. UVRAG, a tumour suppressor candidate that is monoallelically mutated at high frequency in human colon cancers, associates with the Beclin1–Bcl-2–PI(3)KC3 multiprotein complex, where UVRAG and Beclin1 interdependently induce autophagy. UVRAG-mediated activation of the Beclin1–PI(3)KC3 complex promotes autophagy and also suppresses the proliferation and tumorigenicity of human colon cancer cells. These results identify UVRAG as an essential component of the Beclin1–PI(3)KC3 lipid kinase complex that is an important signalling checkpoint for autophagy and tumour-cell growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of Beclin1, PI(3)KC3 and UVRAG as vBcl-2 binding proteins.
Figure 2: UVRAG Interacts with Beclin1, PI(3)KC3 and vBcl-2.
Figure 3: Autophagosome formation induced by UVRAG expression.
Figure 4: UVRAG expression increases the volume and relative enzymatic activity of lysosomal compartments.
Figure 5: Beclin1 and UVRAG interdependently induce autophagosome formation.
Figure 6: Increase of the Beclin1–PI(3)KC3 interaction and PI(3)KC3 activity by UVRAG.
Figure 7: Effect of UVRAG ectopic expression on growth groperties.
Figure 8: Schematic representation of a model for a cross-regulatory mechanism of Beclin1-mediated modulation of autophagy.

Similar content being viewed by others

References

  1. Boya, P. et al. Inhibition of macroautophagy triggers apoptosis. Mol. Cell Biol. 25, 1025–1040 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Klionsky, D. J. The molecular machinery of autophagy: unanswered questions. J. Cell Sci. 118, 7–18 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Levine, B. Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120, 159–162 (2005).

    CAS  PubMed  Google Scholar 

  4. Levine, B. & Klionsky, D. J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6, 463–477 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Lum, J. J., DeBerardinis, R. J. & Thompson, C. B. Autophagy in metazoans: cell survival in the land of plenty. Nature Rev. Mol. Cell Biol. 6, 439–448 (2005).

    Article  CAS  Google Scholar 

  6. Kihara, A., Noda, T., Ishihara, N. & Ohsumi, Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol. 152, 519–530 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Suzuki, K. et al. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 20, 5971–5981 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Furuya N., Yu J., Byfield M., Pattingre S & B., L. The evolutionarily conserved domain of beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy 1, 46–52 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Aita, V. M. et al. Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 59, 59–65 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Liang, X. H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Qu, X. et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest. 112, 1809–1820 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yue, Z., Jin, S., Yang, C., Levine, A. J. & Heintz, N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl Acad. Sci. USA 100, 15077–15082 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gozuacik, D. & Kimchi, A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23, 2891–2906 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Jia, L. et al. Inhibition of autophagy abrogates tumour necrosis factor alpha induced apoptosis in human T-lymphoblastic leukaemic cells. Br. J. Haematol. 98, 673–685 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Mills, K. R., Reginato, M., Debnath, J., Queenan, B. & Brugge, J. S. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is required for induction of autophagy during lumen formation in vitro. Proc. Natl Acad. Sci. USA 101, 3438–3443 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thorburn, J. et al. Selective inactivation of a Fas-associated death domain protein (FADD)-dependent apoptosis and autophagy pathway in immortal epithelial cells. Mol. Biol. Cell 16, 1189–1199 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arico, S. et al. The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J. Biol. Chem. 276, 35243–35246 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Pattingre, S. et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927–939 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Shimizu, S. et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nature Cell Biol. 6, 1221–1228 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Virgin, H. W. t. et al. Complete sequence and genomic analysis of murine gammaherpesvirus 68. J. Virol. 71, 5894–5904 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Polster, B. M., Pevsner, J. & Hardwick, J. M. Viral Bcl-2 homologs and their role in virus replication and associated diseases. Biochim. Biophys. Acta. 1644, 211–227 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Roy, D. J., Ebrahimi, B. C., Dutia, B. M., Nash, A. A. & Stewart, J. P. Murine gammaherpesvirus M11 gene product inhibits apoptosis and is expressed during virus persistence. Arch. Virol. 145, 2411–2420 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, G. H., Garvey, T. L. & Cohen, J. I. The murine gammaherpesvirus-68 M11 protein inhibits Fas- and TNF-induced apoptosis. J. Gen. Virol. 80, 2737–2740 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. de Lima, B. D., May, J. S., Marques, S., Simas, J. P. & Stevenson, P. G. Murine gammaherpesvirus 68 bcl-2 homologue contributes to latency establishment in vivo. J. Gen. Virol. 86, 31–40 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Gangappa, S., van Dyk, L. F., Jewett, T. J., Speck, S. H. & Virgin, H. W. IV. Identification of the in vivo role of a viral bcl-2. J. Exp. Med. 195, 931–940 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bekri, S. et al. Detailed map of a region commonly amplified at 11q13->q14 in human breast carcinoma. Cytogenet. Cell. Genet. 79, 125–131 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Perelman, B. et al. Molecular cloning of a novel human gene encoding a 63-kDa protein and its sublocalization within the 11q13 locus. Genomics 41, 397–405 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Goi, T. et al. Ascending colon cancer with hepatic metastasis and cholecystolithiasis in a patient with situs inversus totalis without any expression of UVRAG mRNA: report of a case. Surg. Today 33, 702–706 (2003).

    Article  PubMed  Google Scholar 

  29. Ionov, Y., Nowak, N., Perucho, M., Markowitz, S. & Cowell, J. K. Manipulation of nonsense mediated decay identifies gene mutations in colon cancer cells with microsatellite instability. Oncogene 23, 639–645 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Liang, X. H. et al. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J. Virol. 72, 8586–8596 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Loh, J. et al. A surface groove essential for viral bcl-2 function during chronic infection in vivo. PLoS Pathog. 1, e10 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tanida, I., Ueno, T. & Kominami, E. LC3 conjugation system in mammalian autophagy. Int. J. Biochem. Cell. Biol. 36, 2503–2518 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T. & Ohsumi, Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 15, 1101–1111 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vieira, O. V. et al. Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J. Cell Biol. 155, 19–25 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Levine, B. & Yuan, J. Autophagy in cell death: an innocent convict? J. Clin. Invest. 115, 2679–2688 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Iida, A. et al. Identification of a gene disrupted by inv(11)(q13.5;q25) in a patient with left-right axis malformation. Hum. Genet. 106, 277–287 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Lum, J. J. et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120, 237–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Nobukuni, T. et al. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc. Natl Acad. Sci. USA 102, 14238–14243 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partly supported by U.S. Public Health Service grants CA82057, CA91819, CA31363, CA106156, and RR00168 (JUJ), the Creative Research Initiative of Korea Ministry of Science and Technology (B.-H.O and B.-S.K.). P.F. is a Leukemia & Lymphoma Society Fellow. We thank B. Levine, M.J. Hardwick, S. Virgin, S. Field, N. Mizushima, T. Yoshimori, J. Backer and Y. Ohsumi for providing reagents, T. Seo and S. Dann for helping with the PI3KC3 assay, S. Gygi for mass spectrometry, J. Mackey for performing electron microscopy, and T.C. Taylor and K.G. Toney for helping with manuscript preparation. Finally, we thank all members of Tumor Virology Division for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae U. Jung.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5 and Supplementary Data (PDF 1164 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, C., Feng, P., Ku, B. et al. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8, 688–698 (2006). https://doi.org/10.1038/ncb1426

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1426

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing