Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Phosphorylation-specific prolyl isomerization: is there an underlying theme?

Abstract

The prolyl isomerase Pin1 is a conserved enzyme that is intimately involved in diverse biological processes and pathological conditions such as cancer and Alzheimer's disease. By catalysing cis–trans interconversion of certain motifs containing phosphorylated serine or threonine residues followed by a proline residue (pSer/Thr-Pro), Pin1 can have profound effects on phosphorylation signalling. The structural and functional differences that result from cis–trans isomerization of specific pSer/Thr-Pro motifs probably underlie most, if not all, Pin1-dependent actions. Phosphorylation-dependent prolyl isomerization by Pin1 remains a unique mode for the modulation of signal transduction. Here, we provide an overview of the plethora of regulatory events that involve this unique enzyme, with a particular focus on oncogenic signalling and neurodegeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pin1 functions as a critical catalyst for multiple pro-proliferative and pro-apoptotic pathways.
Figure 2: Models for the effects of Pin1-catalysed prolyl isomerization on its substrates.

Similar content being viewed by others

References

  1. Lu, K. P., Hanes, S. D. & Hunter, T. A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380, 544–547 (1996).

    Article  CAS  Google Scholar 

  2. Ye, X. S. et al. The NIMA protein kinase is hyperphosphorylated and activated downstream of p34cdc2/cyclin B: coordination of two mitosis promoting kinases. EMBO J. 14, 986–994 (1995).

    Article  CAS  Google Scholar 

  3. Lu, K. P. & Hunter, T. Evidence for a NIMA-like mitotic pathway in vertebrate cells. Cell 81, 413–424 (1995).

    Article  CAS  Google Scholar 

  4. Yaffe, M. B. et al. Sequence-specific and phosphorylation-dependent proline isomerization: A potential mitotic regulatory mechanism. Science 278, 1957–1960 (1997).

    Article  CAS  Google Scholar 

  5. Ranganathan, R., Lu, K. P., Hunter, T. & Noel, J. P. Structural and functional analysis of the mitotic peptidyl-prolyl isomerase Pin1 suggests that substrate recognition is phosphorylation dependent. Cell 89, 875–886 (1997).

    Article  CAS  Google Scholar 

  6. Lu, K. P., Liou, Y. C. & Zhou, X. Z. Pinning down the proline-directed phosphorylation signaling. Trends Cell Biol. 12, 164–172 (2002).

    Article  CAS  Google Scholar 

  7. Lu, K. P. Pinning down cell signaling, cancer and Alzheimer's disease. Trends Biochem. Sci. 29, 200–209 (2004).

    Article  CAS  Google Scholar 

  8. Lu, P. J., Zhou, X. Z., Shen, M. & Lu, K. P. A function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science 283, 1325–1328 (1999).

    Article  CAS  Google Scholar 

  9. Lu, P. J., Wulf, G., Zhou, X. Z., Davies, P. & Lu, K. P. The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 399, 784–788 (1999).

    Article  CAS  Google Scholar 

  10. Zhou, X. Z. et al. Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol. Cell 6, 873–883 (2000).

    Article  CAS  Google Scholar 

  11. Winkler, K. E., Swenson, K. I., Kornbluth, S. & Means, A. R. Requirement of the prolyl isomerase Pin1 for the replication checkpoint. Science 287, 1644–1647 (2000).

    Article  CAS  Google Scholar 

  12. Wu, X. et al. The Ess1 prolyl isomerase is linked to chromatin remodeling complexes and the general transcription machinery. EMBO J. 19, 3727–3738 (2000).

    Article  CAS  Google Scholar 

  13. Wulf, G. M. et al. Pin1 is overexpressed in breast cancer and potentiates the transcriptional activity of phosphorylated c-Jun towards the cyclin D1 gene. EMBO J. 20, 3459–3472 (2001).

    Article  CAS  Google Scholar 

  14. Ryo, A., Nakamura, N., Wulf, G., Liou, Y. C. & Lu, K. P. Pin1 regulates turnover and subcellular localization of β-catenin by inhibiting its interaction with APC. Nature Cell Biol. 3, 793–801 (2001).

    Article  CAS  Google Scholar 

  15. Stukenberg, P. T. & Kirschner, M. W. Pin1 acts catalytically to promote a conformational change in Cdc25. Mol. Cell 7, 1071–1083 (2001).

    Article  CAS  Google Scholar 

  16. Liou, Y. C. et al. Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. Proc. Natl Acad. Sci. USA 99, 1335–1340 (2002).

    Article  CAS  Google Scholar 

  17. Ryo, A. et al. Pin1 is an E2F target gene essential for the Neu/Ras-induced transformation of mammary epithelial cells. Mol. Cell Biol. 22, 5281–5295 (2002).

    Article  CAS  Google Scholar 

  18. Wulf, G. M., Liou, Y. C., Ryo, A., Lee, S. W. & Lu, K. P. Role of Pin1 in the regulation of p53 stability and p21 transactivation, and cell cycle checkpoints in response to DNA damage. J. Biol. Chem. 277, 47976–47979 (2002).

    Article  CAS  Google Scholar 

  19. Zheng, H. et al. The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature 419, 849–853 (2002).

    Article  CAS  Google Scholar 

  20. Zacchi, P. et al. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 419, 853–857 (2002).

    Article  CAS  Google Scholar 

  21. Ryo, A. et al. Regulation of NF-κB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol. Cell 12, 1413–1426 (2003).

    Article  CAS  Google Scholar 

  22. Atchison, F. W., Capel, B. & Means, A. R. Pin1 regulates the timing of mammalian primordial germ cell proliferation. Development 130, 3579–3586 (2003).

    Article  CAS  Google Scholar 

  23. Xu, Y. X., Hirose, Y., Zhou, X. Z., Lu, K. P. & Manley, J. L. Pin1 modulates the structure and function of human RNA polymerase II. Genes Dev. 17, 2765–2776 (2003).

    Article  CAS  Google Scholar 

  24. Liou, Y.-C. et al. Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 424, 556–561 (2003).

    Article  CAS  Google Scholar 

  25. Yeh, E. et al. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nature Cell Biol. 6, 308–318 (2004).

    Article  CAS  Google Scholar 

  26. Mantovani, F. et al. Pin1 links the activities of c-Abl and p300 in regulating p73 function. Mol. Cell 14, 625–636 (2004).

    Article  CAS  Google Scholar 

  27. Wilcox, C. B., Rossettini, A. & Hanes, S. D. Genetic interactions with C-terminal domain (CTD) kinases and the CTD of RNA Pol II suggest a role for ESS1 in transcription initiation and elongation in Saccharomyces cerevisiae. Genetics 167, 93–105 (2004).

    Article  CAS  Google Scholar 

  28. Dougherty, M. K. et al. Regulation of Raf-1 by direct feedback phosphorylation. Mol. Cell 17, 215–224 (2005).

    Article  CAS  Google Scholar 

  29. Thorpe, J. R. et al. Shortfalls in the peptidyl-prolyl cis-trans isomerase protein Pin1 in neurons are associated with frontotemporal dementias. Neurobiol. Dis. 17, 237–249 (2004).

    Article  CAS  Google Scholar 

  30. Ayala, G. et al. Pin1 is a novel prognostic marker in prostate cancer. Cancer Res. 63, 6244–6251 (2003).

    CAS  PubMed  Google Scholar 

  31. Bao, L., Sauter, G., Sowadski, J., Lu, K. P. & Wang, D. Prevalent overexpression of prolyl isomerase Pin1 in human cancers. Am. J. Pathol. 164, 1727–1737 (2004).

    Article  CAS  Google Scholar 

  32. Pang, R. et al. PIN1 overexpression and β-catenin gene mutations are distinct oncogenic events in human hepatocellular carcinoma. Oncogene 23, 4182–4186 (2004).

    Article  CAS  Google Scholar 

  33. Wulf, G., Garg, P., Liou, Y. C., Iglehart, D. & Lu, K. P. Modeling breast cancer in vivo and ex vivo reveals an essential role of Pin1 in tumorigenesis. EMBO J. 23, 3397–3407 (2004).

    Article  CAS  Google Scholar 

  34. Blume-Jensen, P. & Hunter, T. Oncogenic kinase signalling. Nature 411, 355–365 (2001).

    Article  CAS  Google Scholar 

  35. Lu, K. P. Prolyl isomerase Pin1 as a molecular target for cancer diagnostics and therapeutics. Cancer Cell 4, 175–180 (2003).

    Article  CAS  Google Scholar 

  36. Fischer, G. & Aumuller, T. Regulation of peptide bond cis/trans isomerization by enzyme catalysis and its implication in physiological processes. Rev. Physiol. Biochem. Pharmacol. 148, 105–150 (2003).

    Article  CAS  Google Scholar 

  37. Uchida, T., Fujimori, F., Tradler, T., Fischer, G. & Rahfeld, J. U. Identification and characterization of a 14 kDa human protein as a novel parvulin-like peptidyl prolyl cis/trans isomerase. FEBS Lett. 446, 278–282 (1999).

    Article  CAS  Google Scholar 

  38. Weiwad, M., Kullertz, G., Schutkowski, M. & Fischer, G. Evidence that the substrate backbone conformation is critical to phosphorylation by p42 MAP kinase. FEBS Lett. 478, 39–42 (2000).

    Article  CAS  Google Scholar 

  39. Brown, N. R., Noble, M. E., Endicott, J. A. & Johnson, L. N. The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nature Cell Biol. 1, 438–443 (1999).

    Article  CAS  Google Scholar 

  40. Verdecia, M. A., Bowman, M. E., Lu, K. P., Hunter, T. & Noel, J. P. Structural basis for phosphoserine-proline recognition by group IV WW domains. Nature Struct. Biol. 7, 639–643 (2000).

    Article  CAS  Google Scholar 

  41. Shen, M., Stukenberg, P. T., Kirschner, M. W. & Lu, K. P. The essential mitotic peptidyl-prolyl isomerase Pin1 binds and regulates mitosis-specific phosphoproteins. Genes Dev. 12, 706–720 (1998).

    Article  CAS  Google Scholar 

  42. You, H. et al. IGF-1 induces Pin1 expression in promoting cell cycle S-phase entry. J. Cell. Biochem. 84, 211–216 (2002).

    Article  Google Scholar 

  43. Lu, P. J., Zhou, X. Z., Liou, Y. C., Noel, J. P. & Lu, K. P. Critical role of WW domain phosphorylation in regulating its phosphoserine-binding activity and the Pin1 function. J. Biol. Chem. 277, 2381–2384 (2002).

    Article  CAS  Google Scholar 

  44. Yu, Q., Geng, Y. & Sicinski, P. Specific protection against breast cancers by cyclin D1 ablation. Nature 411, 1017–1021 (2001).

    Article  CAS  Google Scholar 

  45. Lamb, J. et al. A mechanism of cyclin D1 action encoded in the patterns of gene expression in human cancer. Cell 114, 323–334 (2003).

    Article  CAS  Google Scholar 

  46. Diehl, J. A., Cheng, M., Roussel, M. F. & Sherr, C. J. Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 12, 3499–3511 (1998).

    Article  CAS  Google Scholar 

  47. Alt, J. R., Cleveland, J. L., Hannink, M. & Diehl, J. A. Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Dev. 14, 3102–3114 (2000).

    Article  CAS  Google Scholar 

  48. Gao, M. et al. Jun turnover is controlled through JNK-dependent phosphorylation of the E3 ligase Itch. Science 306, 271–275 (2004).

    Article  CAS  Google Scholar 

  49. Moon, R. T., Bowerman, B., Boutros, M. & Perrimon, N. The promise and perils of Wnt signaling through β-catenin. Science 296, 1644–1646 (2002).

    Article  CAS  Google Scholar 

  50. Bienz, M. The subcellular destinations of APC proteins. Nature Rev. Mol. Cell Biol. 3, 328–338 (2002).

    Article  CAS  Google Scholar 

  51. Karin, M., Cao, Y., Greten, F. R. & Li, Z. W. NF-κB in cancer: from innocent bystander to major culprit. Nature Rev. Cancer 2, 301–310 (2002).

    Article  CAS  Google Scholar 

  52. Wahl, G. M. & Carr, A. M. The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nature Cell Biol. 3, E277–E286 (2001).

    Article  CAS  Google Scholar 

  53. Lu, K. P., Liou, Y. C. & Vincent, I. Proline-directed phosphorylation and isomerization in mitotic regulation and in Alzheimer's disease. Bioessays 25, 174–181 (2003).

    Article  CAS  Google Scholar 

  54. Lee, M. S. & Tsai, L. H. Cdk5: one of the links between senile plaques and neurofibrillary tangles? J. Alzheimers Dis. 5, 127–137 (2003).

    Article  CAS  Google Scholar 

  55. Zhu, X. et al. Oxidative stress signalling in Alzheimer's disease. Brain Res. 1000, 32–39 (2004).

    Article  CAS  Google Scholar 

  56. Lee, M. S. et al. APP processing is regulated by cytoplasmic phosphorylation. J. Cell Biol. 163, 83–95 (2003).

    Article  CAS  Google Scholar 

  57. Zhang, Z. et al. Destabilization of β-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature 395, 698–702 (1998).

    Article  CAS  Google Scholar 

  58. Geschwind, D. H. Tau phosphorylation, tangles, and neurodegeneration: the chicken or the egg. Neuron 40, 457–460 (2003).

    Article  CAS  Google Scholar 

  59. Kops, O., Zhou, X. Z. & Lu, K. P. Pin1 enhances the dephosphorylation of the C-terminal domain of the RNA polymerase II by Fcp1. FEBS Lett. 513, 305–311 (2002).

    Article  CAS  Google Scholar 

  60. Orlicky, S., Tang, X., Willems, A., Tyers, M. & Sicheri, F. Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell 112, 243–256 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Owing to space limitations we could not include all relevant references, for which we apologise. We are grateful to B. Neel, L. Cantley, T. Hunter and to the members of the Lu laboratory for stimulating discussions. K.P.L. is a Pew Scholar and a Leukemia and Lymphoma Society Scholar. Work done in the authors' laboratory is supported by NIH grants Mentored Clinician Scientist Award CA093655 to G. W. and GM56230, GM58556, AG17870 and AG22082 to K.P.L.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gerburg Wulf or Kun Ping Lu.

Ethics declarations

Competing interests

K. P. Lu is a member of the Scientific Advisory Board and a Consultant for Pintex Pharmaceutical, Inc. However, the work described in this review was not supported by Pintex or any other pharmaceutical company.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wulf, G., Finn, G., Suizu, F. et al. Phosphorylation-specific prolyl isomerization: is there an underlying theme?. Nat Cell Biol 7, 435–441 (2005). https://doi.org/10.1038/ncb0505-435

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0505-435

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing