Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

Reducing background fluorescence reveals adhesions in 3D matrices

An Addendum to this article was published on 30 November 2012

This article has been updated

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell-matrix adhesions are detected in 3D collagen gels.
Figure 2: Dynamics of cell-matrix adhesions in 3D culture.

Change history

  • 25 October 2012

    In the version of this Correspondence originally published, a manufacturing issue with the rat-tail collagen solution meant that in one Supplementary experiment (Fig. S1i–n) the collagen gel concentration was actually 1.2 mg ml-1 instead of the 2 mg ml-1 we reported. This does not change the conclusions of the paper; see PDF for further details.

References

  1. Geiger, B., Spatz, J. P. & Bershadsky, A. D. Nat. Rev. Mol. Cell Biol. 10, 21–33 (2009).

    Article  CAS  Google Scholar 

  2. Tamariz, E. & Grinnell, F. Mol. Biol. Cell 13, 3915–3929 (2002).

    Article  CAS  Google Scholar 

  3. Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Science 294, 1708–1712 (2001).

    Article  CAS  Google Scholar 

  4. Wolf, K. et al. J. Cell Biol. 160, 267–277 (2003).

    Article  CAS  Google Scholar 

  5. Li, S. et al. FASEB J. 17, 97–99 (2002).

    Article  Google Scholar 

  6. Wozniak, M. A., Desai, R., Solski, P. A., Der, C. J. & Keely, P. J. J. Cell Biol. 163, 583–595 (2003).

    Article  CAS  Google Scholar 

  7. Zhou, X. et al. Genes Dev. 22, 1231–1243 (2008).

    Article  CAS  Google Scholar 

  8. Hakkinen, K. M., Harunaga, J. S., Doyle, A. D. & Yamada, K. M. Tissue Eng. Part A doi: 10.1089/ten.tea.2010.0273 (in press).

  9. Petroll, M. W. & Ma, L. Cell Motil. Cytoskeleton 55, 254–264 (2003).

    Article  Google Scholar 

  10. Knight, B. et al. Curr. Biol. 10, 576–585 (2000).

    Article  CAS  Google Scholar 

  11. Fraley, S. I. et al. Nat. Cell Biol. 12, 598–604 (2010).

    Article  CAS  Google Scholar 

  12. Friedl, P. & Brocker, E. B. Cell. Mol. Life Sci. 57, 41–64 (2000).

    Article  CAS  Google Scholar 

  13. Hell, S. W. Nat. Biotechnol. 21, 1347–1355 (2003).

    Article  CAS  Google Scholar 

  14. Watanabe, N. & Mitchison, T. J. Science 295, 1083–1086 (2002).

    Article  CAS  Google Scholar 

  15. Choi, C. K. et al. Nat. Cell. Biol. 10, 1039–1050 (2008).

    Article  CAS  Google Scholar 

  16. Choquet, D., Felsenfeld, D. P. & Sheetz, M. P. Cell 88, 39 (1997).

    Article  CAS  Google Scholar 

  17. Pelham, R. J. & Wang, Y.-L. Proc. Natl. Acad. Sci. USA. 94, 13661–13665 (1997).

    Article  CAS  Google Scholar 

  18. Doyle, A. D., Wang, F. W., Matsumoto, K. & Yamada, K. M. J. Cell Biol. 184, 481–490 (2009).

    Article  CAS  Google Scholar 

  19. Friedl, P. & Wolf, K. J. Cell Biol. 188, 11–19 (2010).

    Article  CAS  Google Scholar 

  20. Smith, A. et al. J. Cell Biol. 170, 141–151 (2005).

    Article  CAS  Google Scholar 

  21. Lammermann, T. et al. Nature 453, 51–55 (2008).

    Article  Google Scholar 

  22. Laukaitis, C. M., Webb, D. J., Donais, K. & Horwitz, A. F. J. Cell Biol. 153, 1427–1440 (2001).

    Article  CAS  Google Scholar 

  23. Shaner, N. C. et al. Nat. Methods 5, 545–551 (2008).

    Article  CAS  Google Scholar 

  24. Zamir, E. et al. J. Cell Sci. 112, 1655–1669 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Choi, M. Vicente-Manzanares, R. Tilghman, and E. Gratton for helpful discussions and technical assistance. The research was supported by the Cell Migration Consortium (U54 GM064346) and GM23244. K.E.K. is supported by a Cancer Training Grant at the University of Virginia Cancer Center (T32 CA009109-34).

Author information

Authors and Affiliations

Authors

Contributions

K.E.K. performed the experiments and analysed the data. K.E.K. and A.R.H. designed the experiments and wrote the paper.

Corresponding author

Correspondence to Alan Rick Horwitz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 422 kb)

Supplementary Information

Supplementary Information, Video S1 (MOV 5250 kb)

Supplementary Information

Supplementary Information, Video S2 (MOV 6750 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubow, K., Horwitz, A. Reducing background fluorescence reveals adhesions in 3D matrices. Nat Cell Biol 13, 3–5 (2011). https://doi.org/10.1038/ncb0111-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0111-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing