Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A small molecule–kinase interaction map for clinical kinase inhibitors

Abstract

Kinase inhibitors show great promise as a new class of therapeutics. Here we describe an efficient way to determine kinase inhibitor specificity by measuring binding of small molecules to the ATP site of kinases. We have profiled 20 kinase inhibitors, including 16 that are approved drugs or in clinical development, against a panel of 119 protein kinases. We find that specificity varies widely and is not strongly correlated with chemical structure or the identity of the intended target. Many novel interactions were identified, including tight binding of the p38 inhibitor BIRB-796 to an imatinib-resistant variant of the ABL kinase, and binding of imatinib to the SRC-family kinase LCK. We also show that mutations in the epidermal growth factor receptor (EGFR) found in gefitinib-responsive patients do not affect the binding affinity of gefitinib or erlotinib. Our results represent a systematic small molecule-protein interaction map for clinical compounds across a large number of related proteins.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Competition binding assay for measuring the interaction between unlinked, unmodified ('free') small molecules and kinases.
Figure 2: Panel of binding assays for 113 different protein kinases.
Figure 3: Specificity profiles of clinical kinase inhibitors.
Figure 4: Distribution of binding constants.
Figure 5: Hierarchical cluster analysis of specificity profiles.
Figure 6: Relative binding affinities of EGFR inhibitors for wild type and mutant forms of EGFR.

Similar content being viewed by others

References

  1. Dancey, J. & Sausville, E.A. Issues and progress with protein kinase inhibitors for cancer treatment. Nat. Rev. Drug Discov. 2, 296–313 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Cohen, P. Protein kinases–the major drug targets of the twenty-first century? Nat. Rev. Drug Discov. 1, 309–315 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Manning, G., Whyte, D.B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Davies, S.P., Reddy, H., Caivano, M. & Cohen, P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351, 95–105 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bain, J., McLauchlan, H., Elliott, M. & Cohen, P. The specificities of protein kinase inhibitors: an update. Biochem. J. 371, 199–204 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lynch, T.J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Paez, J.G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Sche, P.P., McKenzie, K.M., White, J.D. & Austin, D.J. Display cloning: functional identification of natural product receptors using cDNA-phage display. Chem. Biol. 6, 707–716 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Kumar, S., Boehm, J. & Lee, J.C. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat. Rev. Drug Discov. 2, 717–726 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Lee, J.C. et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372, 739–746 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Godl, K. et al. An efficient proteomics method to identify the cellular targets of protein kinase inhibitors. Proc. Natl. Acad. Sci. USA 100, 15434–15439 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tong, L. et al. A highly specific inhibitor of human p38 MAP kinase binds in the ATP pocket. Nat. Struct. Biol. 4, 311–316 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Pargellis, C. et al. Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nat. Struct. Biol. 9, 268–272 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Fitzgerald, C.E. et al. Structural basis for p38alpha MAP kinase quinazolinone and pyridol-pyrimidine inhibitor specificity. Nat. Struct. Biol. 10, 764–769 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Gray, N.S. et al. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science 281, 533–538 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Meggio, F. et al. Different susceptibility of protein kinases to staurosporine inhibition. Kinetic studies and molecular bases for the resistance of protein kinase CK2. Eur. J. Biochem. 234, 317–322 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Bennett, B.L. et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl. Acad. Sci. USA 98, 13681–13686 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Buchdunger, E., Matter, A. & Druker, B.J. Bcr-Abl inhibition as a modality of CML therapeutics. Biochim. Biophys. Acta 1551, M11–M18 (2001).

    CAS  PubMed  Google Scholar 

  19. Wakeling, A.E. et al. ZD1839 (gefitinib): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res. 62, 5749–5754 (2002).

    CAS  PubMed  Google Scholar 

  20. Moyer, J.D. et al. Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res. 57, 4838–4848 (1997).

    CAS  PubMed  Google Scholar 

  21. Allen, L.F., Lenehan, P.F., Eiseman, I.A., Elliott, W.L. & Fry, D.W. Potential benefits of the irreversible pan-erbB inhibitor, CI-1033, in the treatment of breast cancer. Semin. Oncol. 29, 11–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Rusnak, D.W. et al. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol. Cancer Ther. 1, 85–94 (2001).

    CAS  PubMed  Google Scholar 

  23. Torrance, C.J. et al. Combinatorial chemoprevention of intestinal neoplasia. Nat. Med. 6, 1024–1028 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Wedge, S.R. et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res. 62, 4645–4655 (2002).

    CAS  PubMed  Google Scholar 

  25. Wood, J.M. et al. PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res. 60, 2178–2189 (2000).

    CAS  PubMed  Google Scholar 

  26. Kelly, L.M. et al. CT53518, a novel selective FLT3 antagonist for the treatment of acute myelogenous leukemia (AML). Cancer Cell 1, 421–432 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Vieth, M. et al. Kinomics-structural biology and chemogenomics of kinase inhibitors and targets. Biochim. Biophys. Acta 1697, 243–257 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Druker, B.J. Perspectives on the development of a molecularly targeted agent. Cancer Cell 1, 31–36 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Gorre, M.E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293, 876–880 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. von Bubnoff, N., Schneller, F., Peschel, C. & Duyster, J. BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study. Lancet 359, 487–491 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Shah, N.P. et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2, 117–125 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Gambacorti-Passerini, C.B. et al. Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-positive leukaemias. Lancet Oncol. 4, 75–85 (2003).

    Article  PubMed  Google Scholar 

  33. Shah, N.P. et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305, 399–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Branford, S. et al. High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood 99, 3472–3475 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Azam, M., Latek, R.R. & Daley, G.Q. Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell 112, 831–843 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Roumiantsev, S. et al. Clinical resistance to the kinase inhibitor STI-571 in chronic myeloid leukemia by mutation of Tyr-253 in the Abl kinase domain P-loop. Proc. Natl. Acad. Sci. USA 99, 10700–10705 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Warmuth, M. et al. Dual-specific Src and Abl kinase inhibitors, PP1 and CGP76030, inhibit growth and survival of cells expressing imatinib mesylate-resistant Bcr-Abl kinases. Blood 101, 664–672 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. La Rosee, P., Corbin, A.S., Stoffregen, E.P., Deininger, M.W. & Druker, B.J. Activity of the Bcr-Abl kinase inhibitor PD180970 against clinically relevant Bcr-Abl isoforms that cause resistance to imatinib mesylate (imatinib, STI571). Cancer Res. 62, 7149–7153 (2002).

    CAS  PubMed  Google Scholar 

  39. Huron, D.R. et al. A novel pyridopyrimidine inhibitor of abl kinase is a picomolar inhibitor of Bcr-abl-driven K562 cells and is effective against STI571-resistant Bcr-abl mutants. Clin. Cancer Res. 9, 1267–1273 (2003).

    CAS  PubMed  Google Scholar 

  40. Druker, B.J. et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. 2, 561–566 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Nagar, B. et al. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res. 62, 4236–4243 (2002).

    CAS  PubMed  Google Scholar 

  42. Goldberg, D.R. et al. Optimization of 2-phenylaminoimidazo[4,5-h]isoquinolin-9-ones: orally active inhibitors of lck kinase. J. Med. Chem. 46, 1337–1349 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Mattiuzzi, G.N. et al. Development of Varicella-Zoster virus infection in patients with chronic myelogenous leukemia treated with imatinib mesylate. Clin. Cancer Res. 9, 976–980 (2003).

    CAS  PubMed  Google Scholar 

  44. Dietz, A.B. et al. imatinib mesylate inhibits T-cell proliferation in vitro and delayed-type hypersensitivity in vivo. Blood 104, 1094–1099 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Ma, Y. et al. The c-KIT mutation causing human mastocytosis is resistant to STI571 and other KIT kinase inhibitors; kinases with enzymatic site mutations show different inhibitor sensitivity profiles than wild-type kinases and those with regulatory-type mutations. Blood 99, 1741–1744 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Lynch, T.J. et al. Novel agents in the treatment of lung cancer: conference summary statement. Clin. Cancer Res. 10, 4199s–4204s (2004).

    Article  PubMed  Google Scholar 

  47. Pao, W. et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl. Acad. Sci. USA 101, 13306–13311 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Tony Hunter, Nicholas Lydon and Webster Cavenee for a critical reading of the manuscript and helpful discussions, Dan Lockhart for writing software tools to facilitate data analysis, David Austin for helpful suggestions regarding compound synthesis and Nicholas Olney and Victor Perez for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Patrick P Zarrinkar or David J Lockhart.

Ethics declarations

Competing interests

All authors are current or former employees of Ambit Biosciences.

Supplementary information

Supplementary Table 1

Kinase inhibitors for which specificity profiles were determined (PDF 32 kb)

Supplementary Table 2

Comparison of binding constants measured in the competition binding assays to published results. (PDF 19 kb)

Supplementary Table 3

Comparison of the results of cell-based assays and binding assays for FLT3 and EGFR inhibitors. (PDF 9 kb)

Supplementary Table 4

Complete quantitative results of screening twenty kinase inhibitors against 119 protein kinases. (PDF 28 kb)

Supplementary Table 5

Binding constants for eight small molecules binding to ten EGFR variants. Binding constant values are in nanomolar. (PDF 10 kb)

Supplementary Table 6

List of clone type used for each kinase assay. Domain clones include the complete kinase catalytic domain along with flanking sequences. (PDF 18 kb)

Supplementary Notes (PDF 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabian, M., Biggs, W., Treiber, D. et al. A small molecule–kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 23, 329–336 (2005). https://doi.org/10.1038/nbt1068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1068

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing