Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inflammation, metaflammation and immunometabolic disorders

Abstract

Proper regulation and management of energy, substrate diversity and quantity, as well as macromolecular synthesis and breakdown processes, are fundamental to cellular and organismal survival and are paramount to health. Cellular and multicellular organization are defended by the immune response, a robust and critical system through which self is distinguished from non-self, pathogenic signals are recognized and eliminated, and tissue homeostasis is safeguarded. Many layers of evolutionarily conserved interactions occur between immune response and metabolism. Proper maintenance of this delicate balance is crucial for health and has important implications for many pathological states such as obesity, diabetes, and other chronic non-communicable diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunometabolic impact on health.
Figure 2: Evolutionary conservation of immune and metabolic pathway crosstalk.
Figure 3: Convergence of key signalling molecules on both metabolic and inflammatory pathways and functional outcomes.

Similar content being viewed by others

References

  1. Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006)

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Pearce, E. L. & Pearce, E. J. Metabolic pathways in immune cell activation and quiescence. Immunity 38, 633–643 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kotas, M. E. & Medzhitov, R. Homeostasis, inflammation, and disease susceptibility. Cell 160, 816–827 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Agrawal, N. et al. The Drosophila TNF Eiger is an adipokine that acts on insulin-producing cells to mediate nutrient response. Cell Metab. 23, 675–684 (2016).An important study demonstrating the evolutionary conservation of the negative impact of TNF on insulin production, insulin action and glucose metabolism, and a demonstration of how cytokines can serve as metabolic hormones.

    Article  CAS  PubMed  Google Scholar 

  5. Mabery, E. M. & Schneider, D. S. The Drosophila TNF ortholog Eiger is required in the fat body for a robust immune response. J. Innate Immun. 2, 371–378 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, M. C., Bohmann, D. & Jasper, H. JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 121, 115–125 (2005)

    Article  CAS  PubMed  Google Scholar 

  7. DiAngelo, J. R., Bland, M. L., Bambina, S., Cherry, S. & Birnbaum, M. J. The immune response attenuates growth and nutrient storage in Drosophila by reducing insulin signaling. Proc. Natl Acad. Sci. USA 106, 20853–20858 (2009)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  8. Hull-Thompson, J. et al. Control of metabolic homeostasis by stress signaling is mediated by the lipocalin NLaz. PLoS Genet. 5, e1000460 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Pasco, M. Y. & Léopold, P. High sugar-induced insulin resistance in Drosophila relies on the lipocalin Neural Lazarillo. PLoS One 7, e36583 (2012)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  10. Morris, S. N. et al. Development of diet-induced insulin resistance in adult Drosophila melanogaster. Biochim. Biophys. Acta 1822, 1230–1237 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pekala, P., Kawakami, M., Vine, W., Lane, M. D. & Cerami, A. Studies of insulin resistance in adipocytes induced by macrophage mediator. J. Exp. Med. 157, 1360–1365 (1983).This important paper demonstrates that macrophages activated by LPS secrete products that block insulin action in adipocytes.

    Article  CAS  PubMed  Google Scholar 

  12. Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993)

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Uysal, K. T., Wiesbrock, S. M., Marino, M. W. & Hotamisligil, G. S. Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature 389, 610–614 (1997)

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).Published simultaneously, these two important studies (refs 14 and 15 ) demonstrated macrophage infiltration into adipose tissue and relate this to metabolic deterioration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hausberger, F. X. Pathological changes in adipose tissue of obese mice. Anat. Rec. 154, 651–660 (1966)

    Article  CAS  PubMed  Google Scholar 

  17. Hellman, B. Studies in obese-hyperglycemic mice. Ann. NY Acad. Sci. 131, 541–558 (1965)

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nguyen, M. T. et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J. Biol. Chem. 282, 35279–35292 (2007)

    Article  CAS  PubMed  Google Scholar 

  20. Hevener, A. L. et al. Macrophage PPARg is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. J. Clin. Invest. 117, 1658–1669 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fan, R. et al. Loss of the co-repressor GPS2 sensitizes macrophage activation upon metabolic stress induced by obesity and type 2 diabetes. Nat. Med. 22, 780–791 (2016)

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Li, P. et al. Hematopoietic-derived Galectin-3 causes cellular and systemic insulin resistance. Cell 167, 973–984.e12 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wen, H. et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12, 408–415 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stienstra, R. et al. The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metab. 12, 593–605 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Herder, C., Dalmas, E., Böni-Schnetzler, M. & Donath, M. Y. The IL-1 pathway in type 2 diabetes and cardiovascular complications. Trends Endocrinol. Metab. 26, 551–563 (2015)

    Article  CAS  PubMed  Google Scholar 

  26. Larsen, C. M. et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 356, 1517–1526 (2007).A critical study demonstrating the benefits of blocking inflammation in humans with type 2 diabetes.

    Article  CAS  PubMed  Google Scholar 

  27. Song, F. et al. RAGE regulates the metabolic and inflammatory response to high-fat feeding in mice. Diabetes 63, 1948–1965 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Montes, V. N. et al. Anti-HMGB1 antibody reduces weight gain in mice fed a high-fat diet. Nutr. Diabetes 5, e161 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lu, B. et al. Novel role of PKR in inflammasome activation and HMGB1 release. Nature 488, 670–674 (2012)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. He, Y., Franchi, L. & Núñez, G. The protein kinase PKR is critical for LPS-induced iNOS production but dispensable for inflammasome activation in macrophages. Eur. J. Immunol. 43, 1147–1152 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boriushkin, E., Wang, J. J., Li, J., Bhatta, M. & Zhang, S. X. p58IPK suppresses NLRP3 inflammasome activation and IL-1β production via inhibition of PKR in macrophages. Sci. Rep. 6, 25013 (2016)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Li, W., Li, J., Sama, A. E. & Wang, H. Carbenoxolone blocks endotoxin-induced protein kinase R (PKR) activation and high mobility group Box 1 (HMGB1) release. Mol. Med. 19, 203–211 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hett, E. C. et al. Chemical genetics reveals a kinase-independent role for protein kinase R in pyroptosis. Nat. Chem. Biol. 9, 398–405 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xie, M. et al. PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nat. Commun. 7, 13280 (2016).This study demonstrates the importance of PKR in inflammasome activation, and how cellular metabolism influences this activity.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. Youssef, O. A. et al. Potential role for snoRNAs in PKR activation during metabolic stress. Proc. Natl Acad. Sci. USA 112, 5023–5028 (2015)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Michel, C. I. et al. Small nucleolar RNAs U32a, U33, and U35a are critical mediators of metabolic stress. Cell Metab. 14, 33–44 (2011).A paper demonstrating the critical role of small nucleolar RNAs in mediating the detrimental effects of metabolic stress, particularly in response to lipids.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fu, S., Watkins, S. M. & Hotamisligil, G. S. The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell Metab. 15, 623–634 (2012)

    Article  CAS  PubMed  Google Scholar 

  38. Lancaster, G. I. et al. PKR is not obligatory for high-fat diet-induced obesity and its associated metabolic and inflammatory complications. Nat. Commun. 7, 10626 (2016)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Hage Hassan, R. et al. Sustained action of ceramide on the insulin signaling pathway in muscle cells: implication of the double-stranded RNA-activated protein kinase. J. Biol. Chem. 291, 3019–3029 (2016)

    Article  PubMed  CAS  Google Scholar 

  40. Chen, S. S. et al. Activation of double-stranded RNA-dependent protein kinase inhibits proliferation of pancreatic β-cells. Biochem. Biophys. Res. Commun. 443, 814–820 (2014)

    Article  CAS  PubMed  Google Scholar 

  41. Song, Y. et al. Activated PKR inhibits pancreatic β-cell proliferation through sumoylation-dependent stabilization of P53. Mol. Immunol. 68 (2 Pt A), 341–349 (2015)

    Article  CAS  PubMed  Google Scholar 

  42. Yang, H. et al. Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. J. Immunol. 185, 1836–1845 (2010)

    Article  CAS  PubMed  Google Scholar 

  43. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Winer, S. et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat. Med. 15, 921–929 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ilan, Y. et al. Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice. Proc. Natl Acad. Sci. USA 107, 9765–9770 (2010)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  46. Bapat, S. P. et al. Depletion of fat-resident Treg cells prevents age-associated insulin resistance. Nature 528, 137–141 (2015)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Cipolletta, D. et al. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486, 549–553 (2012).This paper demonstrates that an established anti-diabetic agent produces its anti-inflammatory and anti-diabetic effects through PPARγ n T reg cells.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  48. Winer, D. A. et al. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat. Med. 17, 610–617 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. DeFuria, J. et al. B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile. Proc. Natl Acad. Sci. USA 110, 5133–5138 (2013)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  50. Nishimura, S. et al. Adipose natural regulatory B cells negatively control adipose tissue inflammation. Cell Metab. 18, 759–766 (2013)

    Article  CAS  PubMed  Google Scholar 

  51. Ji, Y. et al. Activation of natural killer T cells promotes M2 macrophage polarization in adipose tissue and improves systemic glucose tolerance via interleukin-4 (IL-4)/STAT6 protein signaling axis in obesity. J. Biol. Chem. 287, 13561–13571 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lynch, L. Adipose invariant natural killer T cells. Immunology 142, 337–346 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kwon, H. et al. Adipocyte-specific IKKβ signaling suppresses adipose tissue inflammation through an IL-13-dependent paracrine feedback pathway. Cell Reports 9, 1574–1583 (2014).This important paper demonstrates the anti-inflammatory activity of the IKK pathway, and shows that IKK activation is not equivalent to inflammation owing to its impact on resolution in the adipose tissue.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, X. et al. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell 135, 61–73 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Goldfine, A. B. et al. Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial. Ann. Intern. Med. 159, 1–12 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hundal, R. S. et al. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J. Clin. Invest. 109, 1321–1326 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gehart, H., Kumpf, S., Ittner, A. & Ricci, R. MAPK signalling in cellular metabolism: stress or wellness? EMBO Rep. 11, 834–840 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. González-Terán, B. et al. p38γ and p38δ reprogram liver metabolism by modulating neutrophil infiltration. EMBO J. 35, 536–552 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature 420, 333–336 (2002)

    Article  CAS  PubMed  ADS  Google Scholar 

  60. Tuncman, G. et al. Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance. Proc. Natl Acad. Sci. USA 103, 10741–10746 (2006)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  61. Sabio, G. et al. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 322, 1539–1543 (2008).This manuscript shows the pathological role of JNK activity in adipose tissue and demonstrates how this inflammatory input disrupts liver insulin action and glucose metabolism. This paper also addresses the role of JNK1 in macrophages.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  62. Tsaousidou, E. et al. Distinct roles for JNK and IKK activation in Agouti-related peptide neurons in the development of obesity and insulin resistance. Cell Reports 9, 1495–1506 (2014)

    Article  CAS  PubMed  Google Scholar 

  63. Hotamisligil, G. S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140, 900–917 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang, K. & Kaufman, R. J. From endoplasmic-reticulum stress to the inflammatory response. Nature 454, 455–462 (2008)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  65. Keestra-Gounder, A. M. et al. NOD1 and NOD2 signalling links ER stress with inflammation. Nature 532, 394–397 (2016)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  66. Oslowski, C. M. et al. Thioredoxin-interacting protein mediates ER stress-induced β cell death through initiation of the inflammasome. Cell Metab. 16, 265–273 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bettigole, S. E. & Glimcher, L. H. Endoplasmic reticulum stress in immunity. Annu. Rev. Immunol. 33, 107–138 (2015)

    Article  CAS  PubMed  Google Scholar 

  68. Yang, L. et al. S-Nitrosylation links obesity-associated inflammation to endoplasmic reticulum dysfunction. Science 349, 500–506 (2015)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  69. Jurczak, M. J. et al. Dissociation of inositol-requiring enzyme (IRE1α)-mediated c-Jun N-terminal kinase activation from hepatic insulin resistance in conditional X-box-binding protein-1 (XBP1) knock-out mice. J. Biol. Chem. 287, 2558–2567 (2012)

    Article  CAS  PubMed  Google Scholar 

  70. Turner, N. & Heilbronn, L. K. Is mitochondrial dysfunction a cause of insulin resistance? Trends Endocrinol. Metab. 19, 324–330 (2008)

    Article  CAS  PubMed  Google Scholar 

  71. Morino, K., Petersen, K. F. & Shulman, G. I. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes 55 (Suppl 2), S9–S15 (2006)

    Article  CAS  PubMed  Google Scholar 

  72. Freemerman, A. J. et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J. Biol. Chem. 289, 7884–7896 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Miao, H. et al. Macrophage CGI-58 deficiency activates ROS-inflammasome pathway to promote insulin resistance in mice. Cell Reports 7, 223–235 (2014)

    Article  CAS  PubMed  Google Scholar 

  74. Bogacka, I., Xie, H., Bray, G. A. & Smith, S. R. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes 54, 1392–1399 (2005)

    Article  CAS  PubMed  Google Scholar 

  75. Kelley, D. E., He, J., Menshikova, E. V. & Ritov, V. B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51, 2944–2950 (2002)

    Article  CAS  PubMed  Google Scholar 

  76. Arruda, A. P. et al. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat. Med. 20, 1427–1435 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fujita, H. et al. The E3 ligase synoviolin controls body weight and mitochondrial biogenesis through negative regulation of PGC-1β. EMBO J. 34, 1042–1055 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Arruda, A. P. & Hotamisligil, G. S. Calcium homeostasis and organelle function in the pathogenesis of obesity and diabetes. Cell Metab. 22, 381–397 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Randle, P. J., Garland, P. B., Hales, C. N. & Newsholme, E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 281, 785–789 (1963)

    Article  Google Scholar 

  80. McGarry, J. D. Glucose-fatty acid interactions in health and disease. Am. J. Clin. Nutr. 67 (Suppl), 500S–504S (1998)

    Article  CAS  PubMed  Google Scholar 

  81. Glass, C. K. & Olefsky, J. M. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab. 15, 635–645 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nguyen, M. T. et al. JNK and tumor necrosis factor-a mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J. Biol. Chem. 280, 35361–35371 (2005). This paper demonstrates that FFAs induce insulin resistance in cells by activating inflammatory cascades involving JNK and IKK.

    Article  CAS  PubMed  Google Scholar 

  83. Tynan, G. A. et al. Endogenous oils derived from human adipocytes are potent adjuvants that promote IL-1α-dependent inflammation. Diabetes 63, 2037–2050 (2014)

    Article  CAS  PubMed  Google Scholar 

  84. Yu, C. et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J. Biol. Chem. 277, 50230–50236 (2002)

    Article  CAS  PubMed  Google Scholar 

  85. Lee, J. Y. et al. Reciprocal modulation of Toll-like receptor-4 signaling pathways involving MyD88 and phosphatidylinositol 3-kinase/AKT by saturated and polyunsaturated fatty acids. J. Biol. Chem. 278, 37041–37051 (2003)

    Article  CAS  PubMed  Google Scholar 

  86. Huang, S. et al. Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. J. Lipid Res. 53, 2002–2013 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Davis, J. E., Gabler, N. K., Walker-Daniels, J. & Spurlock, M. E. Tlr-4 deficiency selectively protects against obesity induced by diets high in saturated fat. Obesity (Silver Spring) 16, 1248–1255 (2008)

    Article  CAS  Google Scholar 

  88. Jin, C., Henao-Mejia, J. & Flavell, R. A. Innate immune receptors: key regulators of metabolic disease progression. Cell Metab. 17, 873–882 (2013)

    Article  CAS  PubMed  Google Scholar 

  89. Kleinridders, A. et al. MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab. 10, 249–259 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sampey, B. P. et al. Metabolomic profiling reveals mitochondrial-derived lipid biomarkers that drive obesity-associated inflammation. PLoS One 7, e38812 (2012)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  91. Lim, J. et al. Diet-induced obesity, adipose inflammation, and metabolic dysfunction correlating with PAR2 expression are attenuated by PAR2 antagonism. FASEB J. 27, 4757–4767 (2013)

    Article  CAS  PubMed  ADS  Google Scholar 

  92. Bikman, B. T. & Summers, S. A. Ceramides as modulators of cellular and whole-body metabolism. J. Clin. Invest. 121, 4222–4230 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Griffin, M. E. et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 48, 1270–1274 (1999)

    Article  CAS  PubMed  Google Scholar 

  94. Szendroedi, J. et al. Role of diacylglycerol activation of PKCθ in lipid-induced muscle insulin resistance in humans. Proc. Natl Acad. Sci. USA 111, 9597–9602 (2014).This study shows that in human subjects lipid-induced insulin resistance in muscle is associated with DAG–PKC activation.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  95. Kim, J. K. et al. PKC-θ knockout mice are protected from fat-induced insulin resistance. J. Clin. Invest. 114, 823–827 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Serra, C. et al. Transgenic mice with dominant negative PKC-theta in skeletal muscle: a new model of insulin resistance and obesity. J. Cell. Physiol. 196, 89–97 (2003)

    Article  CAS  PubMed  Google Scholar 

  97. Kewalramani, G., Fink, L. N., Asadi, F. & Klip, A. Palmitate-activated macrophages confer insulin resistance to muscle cells by a mechanism involving protein kinase C θ and ε. PLoS One 6, e26947 (2011)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  98. Yilmaz, M., Claiborn, K. C. & Hotamisligil, G. S. De novo lipogenesis products and endogenous lipokines. Diabetes 65, 1800–1807 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fox, M. J., Kuzma, J. F. & Washam, W. T. Transitory diabetic syndrome associated with meningococcic meningitis. Arch. Intern. Med. (Chic.) 79, 614–621 (1947)

    Article  CAS  Google Scholar 

  100. Dimas, A. S. et al. Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes 63, 2158–2171 (2014)

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  101. McCarthy, M. I. Genomics, type 2 diabetes, and obesity. N. Engl. J. Med. 363, 2339–2350 (2010)

    Article  CAS  PubMed  Google Scholar 

  102. Florez, J. C. Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes? Diabetologia 51, 1100–1110 (2008)

    Article  CAS  PubMed  Google Scholar 

  103. Jain, P. et al. Systems biology approach reveals genome to phenome correlation in type 2 diabetes. PLoS One 8, e53522 (2013)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  104. Manning, A. K. et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat. Genet. 44, 659–669 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kooner, J. S. et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat. Genet. 43, 984–989 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cho, Y. S. et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat. Genet. 44, 67–72 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Waeber, G. et al. The gene MAPK8IP1, encoding islet-brain-1, is a candidate for type 2 diabetes. Nat. Genet. 24, 291–295 (2000).This paper identifies a mutation in MAPK81P1 which causes constitutive JNK activation in humans leading to a Mendelian form of diabetes.

    Article  CAS  PubMed  Google Scholar 

  108. Ichimura, A. et al. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 483, 350–354 (2012).This paper examines the role of GPR120, which was previously demonstrated by the Olefsky laboratory to be a lipid sensor critical for immunometabolism and diabetes, in human genetic studies.

    Article  CAS  PubMed  ADS  Google Scholar 

  109. Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Brown, A. E. et al. p38 MAPK activation upregulates proinflammatory pathways in skeletal muscle cells from insulin-resistant type 2 diabetic patients. Am. J. Physiol. Endocrinol. Metab. 308, E63–E70 (2015)

    Article  CAS  PubMed  Google Scholar 

  112. Toubal, A., Treuter, E., Clément, K. & Venteclef, N. Genomic and epigenomic regulation of adipose tissue inflammation in obesity. Trends Endocrinol. Metab. 24, 625–634 (2013)

    Article  CAS  PubMed  Google Scholar 

  113. Burska, A. N., Sakthiswary, R. & Sattar, N. Effects of tumour necrosis factor antagonists on insulin sensitivity/resistance in rheumatoid arthritis: a systematic review and meta-analysis. PLoS One 10, e0128889 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Solomon, D. H. et al. Association between disease-modifying antirheumatic drugs and diabetes risk in patients with rheumatoid arthritis and psoriasis. J. Am. Med. Assoc. 305, 2525–2531 (2011)

    Article  CAS  Google Scholar 

  115. Donath, M. Y. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat. Rev. Drug Discov. 13, 465–476 (2014)

    Article  CAS  PubMed  Google Scholar 

  116. Schork, N. J. Personalized medicine: time for one-person trials. Nature 520, 609–611 (2015)

    Article  CAS  PubMed  ADS  Google Scholar 

  117. Cerami, A. TNF and EPO: major players in the innate immune response: their discovery. Ann. Rheum. Dis. 71 (Suppl 2), i55–i59 (2012)

    Article  CAS  PubMed  Google Scholar 

  118. Collino, M. et al. A non-erythropoietic peptide derivative of erythropoietin decreases susceptibility to diet-induced insulin resistance in mice. Br. J. Pharmacol. 171, 5802–5815 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Brines, M. et al. ARA 290, a nonerythropoietic peptide engineered from erythropoietin, improves metabolic control and neuropathic symptoms in patients with type 2 diabetes. Mol. Med. 20, 658–666 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kothari, V., Galdo, J. A. & Mathews, S. T. Hypoglycemic agents and potential anti-inflammatory activity. J. Inflamm. Res. 9, 27–38 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Scheen, A. J., Esser, N. & Paquot, N. Antidiabetic agents: potential anti-inflammatory activity beyond glucose control. Diabetes Metab. 41, 183–194 (2015)

    Article  CAS  PubMed  Google Scholar 

  122. Lancaster, G. I. & Febbraio, M. A. The immunomodulating role of exercise in metabolic disease. Trends Immunol. 35, 262–269 (2014)

    Article  CAS  PubMed  Google Scholar 

  123. Coward, W. R., Marei, A., Yang, A., Vasa-Nicotera, M. M. & Chow, S. C. Statin-induced proinflammatory response in mitogen-activated peripheral blood mononuclear cells through the activation of caspase-1 and IL-18 secretion in monocytes. J. Immunol. 176, 5284–5292 (2006)

    Article  CAS  PubMed  Google Scholar 

  124. Henriksbo, B. D. et al. Fluvastatin causes NLRP3 inflammasome-mediated adipose insulin resistance. Diabetes 63, 3742–3747 (2014).This study demonstrates a direct link between a statin and inflammasome activation, showing a mechanism by which statins may act as pro-inflammatory agents.

    Article  CAS  PubMed  Google Scholar 

  125. Nishimoto, S. et al. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance. Sci. Adv. 2, e1501332 (2016)

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  126. Lefere, S. et al. Hypoxia-regulated mechanisms in the pathogenesis of obesity and non-alcoholic fatty liver disease. Cell. Mol. Life Sci. 73, 3419–3431 (2016)

    Article  CAS  PubMed  Google Scholar 

  127. Minamino, T. et al. A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat. Med. 15, 1082–1087 (2009)

    Article  CAS  PubMed  Google Scholar 

  128. Thaler, J. P. et al. Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Invest. 122, 153–162 (2012)

    Article  CAS  PubMed  Google Scholar 

  129. Wernstedt Asterholm, I. et al. Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab. 20, 103–118 (2014)

    Article  CAS  PubMed  Google Scholar 

  130. Vereecke, L. et al. A20 controls intestinal homeostasis through cell-specific activities. Nat. Commun. 5, 5103 (2014)

    Article  CAS  PubMed  ADS  Google Scholar 

  131. Yi, Z., Stunz, L. L. & Bishop, G. A. CD40-mediated maintenance of immune homeostasis in the adipose tissue microenvironment. Diabetes 63, 2751–2760 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Li, Y. et al. A functional genomics approach to understand variation in cytokine production in humans. Cell 167, 1099–1110.e14 (2016)

    Article  CAS  PubMed  Google Scholar 

  133. ter Horst, R. et al. Host and environmental factors influencing individual human cytokine responses. Cell 167, 1111–1124.e13 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Schirmer, M. et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167, 1125–1136.e8 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bogue, M. A., Churchill, G. A. & Chesler, E. J. Collaborative cross and diversity outbred data resources in the Mouse Phenome Database. Mamm. Genome 26, 511–520 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kebede, M. A. & Attie, A. D. Insights into obesity and diabetes at the intersection of mouse and human genetics. Trends Endocrinol. Metab. 25, 493–501 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ouchi, N. et al. Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science 329, 454–457 (2010)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  138. Fuster, J. J. et al. Non-canonical Wnt signaling promotes obesity-induced adipose tissue inflammation and metabolic dysfunction independent of adipose tissue expansion. Diabetes 64, 1235–1248 (2015)

    Article  CAS  PubMed  Google Scholar 

  139. Suzuki, K., Kumanogoh, A. & Kikutani, H. Semaphorins and their receptors in immune cell interactions. Nat. Immunol. 9, 17–23 (2008)

    Article  CAS  PubMed  Google Scholar 

  140. Shimizu, I. et al. Semaphorin3E-induced inflammation contributes to insulin resistance in dietary obesity. Cell Metab. 18, 491–504 (2013).This study illustrates a new mechanism that couples adipocytes and immune cells and impairs systemic insulin action and glucose metabolism through TNF-mediated inflammatory signals.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to all members of the Hotamisligil laboratory for helpful discussions, and especially G. Parlakgül for the initial preparation of figures, and K. Claiborn for discussions and invaluable editorial assistance. Work in the Hotamisligil laboratory is supported by grants from the National Institutes of Health (DK052539, HL125753, AI116901), the JDRF (2SRA-2016-147-Q-R), and sponsored research agreements from Union Chemique Belge and Servier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gökhan S. Hotamisligil.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Reviewer Information Nature thanks M. Febbraio and R. Kahn for their contribution to the peer review of this work.

Supplementary information

Supplementary Information

This file contains a Supplementary Table and Supplementary Figure 1. (PDF 1339 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hotamisligil, G. Inflammation, metaflammation and immunometabolic disorders. Nature 542, 177–185 (2017). https://doi.org/10.1038/nature21363

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature21363

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing