Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mining the plasma proteome for cancer biomarkers

Abstract

Systematic searches for plasma proteins that are biological indicators, or biomarkers, for cancer are underway. The difficulties caused by the complexity of biological-fluid proteomes and tissue proteomes (which contribute proteins to plasma) and by the extensive heterogeneity among diseases, subjects and levels of sample procurement are gradually being overcome. This is being achieved through rigorous experimental design and in-depth quantitative studies. The expected outcome is the development of panels of biomarkers that will allow early detection of cancer and prediction of the probable response to therapy. Achieving these objectives requires high-quality specimens with well-matched controls, reagent resources, and an efficient process to confirm discoveries through independent validation studies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In-depth analysis of plasma proteins.
Figure 2: Searching for biomarkers through analysing the cellular proteome.
Figure 3: Identification of EGFR glycoforms.

References

  1. Ludwig, J. A. & Weinstein, J. N. Biomarkers in cancer staging, prognosis and treatment selection. Nature Rev. Cancer 5, 845–856 (2005).

    Article  CAS  Google Scholar 

  2. Cox, J. & Mann, M. Is proteomics the new genomics? Cell 130, 395–398 (2007). This is a review of current mass-spectrometry-based proteomic technologies. It explores the relationship between genomics and proteomics and the outlook for protein-expression analysis.

    Article  CAS  Google Scholar 

  3. Faca, V. et al. Contribution of protein fractionation to depth of analysis of the serum and plasma proteomes. J. Proteome Res. 6, 3558–3565 (2007).

    Article  CAS  Google Scholar 

  4. Wu, S. L. et al. Dynamic profiling of the post-translational modifications and interaction partners of epidermal growth factor receptor signaling after stimulation by epidermal growth factor using Extended Range Proteomic Analysis (ERPA). Mol. Cell. Proteomics 5, 1610–1627 (2006).

    Article  CAS  Google Scholar 

  5. Liu, T., Belov, M. E., Jaitly, N., Qian, W. J. & Smith, R. D. Accurate mass measurements in proteomics. Chem. Rev. 107, 3621–3653 (2007).

    Article  CAS  Google Scholar 

  6. Liu, X. et al. Mapping the human plasma proteome by SCX–LC–IMS–MS. J. Am. Soc. Mass Spectrom. 18, 1249–1264 (2007).

    Article  CAS  Google Scholar 

  7. Stahl-Zeng, J., Lange, V., Ossola, R., Aebersold, R. & Domon, B. High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites. Mol. Cell. Proteomics 6, 1809–1817 (2007).

    Article  CAS  Google Scholar 

  8. Kingsmore, S. F. Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nature Rev. Drug Discov. 5, 310–320 (2006).

    Article  CAS  Google Scholar 

  9. Chignard, N. et al. Cleavage of endoplasmic reticulum proteins in hepatocellular carcinoma: detection of generated fragments in patient sera. Gastroenterology 130, 2010–2022 (2006).

    Article  CAS  Google Scholar 

  10. Hu, S., Loo, J. A. & Wong, D. T. Human body fluid proteome analysis. Proteomics 6, 6326–6353 (2006).

    Article  CAS  Google Scholar 

  11. Kim, S. W. et al. Proteomics-based identification of proteins secreted in apical surface fluid of squamous metaplastic human tracheobronchial epithelial cells cultured by three-dimensional organotypic air–liquid interface method. Cancer Res. 67, 6565–6573 (2007).

    Article  CAS  Google Scholar 

  12. Kulasingam, V. & Diamandis, E. P. Proteomic analysis of conditioned media from three breast cancer cell lines: a mine for biomarkers and therapeutic targets. Mol. Cell. Proteomics 6, 1997–2011 (2007).

    Article  CAS  Google Scholar 

  13. States, D. J. et al. Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study. Nature Biotechnol. 24, 333–338 (2006). This paper describes the first large-scale collaborative study to characterize the human serum and plasma proteomes.

    Article  CAS  Google Scholar 

  14. Zhang, H. et al. Mass spectrometric detection of tissue proteins in plasma. Mol. Cell. Proteomics 6, 64–71 (2007).

    Article  CAS  Google Scholar 

  15. Ransohoff, D. F. Bias as a threat to the validity of cancer molecular-marker research. Nature Rev. Cancer 5, 142–149 (2005). This review outlines the experimental pitfalls of cancer biomarker research and suggests ways to avoid bias in clinical research.

    Article  CAS  Google Scholar 

  16. Gao, W. et al. Distinctive serum protein profiles involving abundant proteins in lung cancer patients based upon antibody microarray analysis. BMC Cancer 5, 110, doi:10.1186/1471-2407-5-110 (2005).

    Article  Google Scholar 

  17. Okano, T. et al. Proteomic signature corresponding to the response to gefitinib (Iressa, ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor in lung adenocarcinoma. Clin. Cancer Res. 13, 799–805 (2007).

    Article  CAS  Google Scholar 

  18. Taguchi, F. et al. Mass spectrometry to classify non-small-cell lung cancer patients for clinical outcome after treatment with epidermal growth factor receptor tyrosine kinase inhibitors: a multicohort cross-institutional study. J. Natl Cancer Inst. 99, 838–846 (2007).

    Article  CAS  Google Scholar 

  19. Villanueva, J. et al. Serum peptidome patterns that distinguish metastatic thyroid carcinoma from cancer-free controls are unbiased by gender and age. Mol. Cell. Proteomics 5, 1840–1852 (2006).

    Article  CAS  Google Scholar 

  20. Kirmiz, C. et al. A serum glycomics approach to breast cancer biomarkers. Mol. Cell. Proteomics 6, 43–55 (2007).

    Article  CAS  Google Scholar 

  21. Kyselova, Z. et al. Alterations in the serum glycome due to metastatic prostate cancer. J. Proteome Res. 6, 1822–1832 (2007).

    Article  CAS  Google Scholar 

  22. Barrabes, S. et al. Glycosylation of serum ribonuclease 1 indicates a major endothelial origin and reveals an increase in core fucosylation in pancreatic cancer. Glycobiology 17, 388–400 (2007).

    Article  CAS  Google Scholar 

  23. Zhao, J., Qiu, W., Simeone, D. M. & Lubman, D. M. N-linked glycosylation profiling of pancreatic cancer serum using capillary liquid phase separation coupled with mass spectrometric analysis. J. Proteome Res. 6, 1126–1138 (2007).

    Article  CAS  Google Scholar 

  24. Syka, J. E., Coon, J. J., Schroeder, M. J., Shabanowitz, J. & Hunt, D. F. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl Acad. Sci. USA 101, 9528–9533 (2004).

    Article  ADS  CAS  Google Scholar 

  25. Chatterjee, M. et al. Diagnostic markers of ovarian cancer by high-throughput antigen cloning and detection on arrays. Cancer Res. 66, 1181–1190 (2006).

    Article  CAS  Google Scholar 

  26. Wang, X. et al. Autoantibody signatures in prostate cancer. N. Engl. J. Med. 353, 1224–1135 (2005).

    Article  CAS  Google Scholar 

  27. Hudson, M. E., Pozdnyakova, I., Haines, K., Mor, G. & Snyder, M. Identification of differentially expressed proteins in ovarian cancer using high-density protein microarrays. Proc. Natl Acad. Sci. USA 104, 17494–17499 (2007).

    Article  ADS  CAS  Google Scholar 

  28. Philip, R. et al. Shared immunoproteome for ovarian cancer diagnostics and immunotherapy: potential theranostic approach to cancer. J. Proteome Res. 6, 2509–2517 (2007).

    Article  CAS  Google Scholar 

  29. Brichory, F. M. et al. An immune response manifested by the common occurrence of annexins I and II autoantibodies and high circulating levels of IL-6 in lung cancer. Proc. Natl Acad. Sci. USA 98, 9824–9829 (2001).

    Article  ADS  CAS  Google Scholar 

  30. Pereira-Faca, S. et al. Identification of 14-3-3θ as an antigen that induces a humoral response in lung cancer. Cancer Res. 67, 12000–12006 (2007).

    Article  CAS  Google Scholar 

  31. Madoz-Gurpide, J., Kuick, R., Wang, H., Misek, D. E. & Hanash, S. M. Integral protein microarrays for the identification of lung cancer antigens in sera that induce a humoral immune response. Mol. Cell. Proteomics 7, 268–281 (2008).

    Article  CAS  Google Scholar 

  32. Yasui, Y. et al. A data-analytic strategy for protein biomarker discovery: profiling of high-dimensional proteomic data for cancer detection. Biostatistics 4, 449–463 (2003).

    Article  Google Scholar 

  33. Tada, H., Higuchi, H., Wanatabe, T. M. & Ohuchi, N. In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res. 67, 1138–1144 (2007).

    Article  CAS  Google Scholar 

  34. Gao, X., Cui, Y., Levenson, R. M., Chung, L. W. & Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnol. 22, 969–976 (2004).

    Article  CAS  Google Scholar 

  35. Shafer, M. W., Mangold, L., Partin, A. W. & Haab, B. B. Antibody array profiling reveals serum TSP-1 as a marker to distinguish benign from malignant prostatic disease. Prostate 67, 255–267 (2007).

    Article  Google Scholar 

  36. Fredriksson, S. et al. Protein detection using proximity-dependent DNA ligation assays. Nature Biotechnol. 20, 473–477 (2002).

    Article  CAS  Google Scholar 

  37. Kato, K., Ishimuro, T., Arima, Y., Hirata, I. & Iwata, H. High-throughput immunophenotyping by surface plasmon resonance imaging. Anal. Chem. 79, 8616–8923 (2007).

    Article  CAS  Google Scholar 

  38. Burg, T. P. et al. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446, 1066–1069 (2007).

    Article  ADS  CAS  Google Scholar 

  39. Kuhn, E. et al. Quantification of C-reactive protein in the serum of patients with rheumatoid arthritis using multiple reaction monitoring mass spectrometry and 13C-labeled peptide standards. Proteomics 4, 1175–1186 (2004).

    Article  CAS  Google Scholar 

  40. Hoppe-Seyler, F. & Butz, K. Peptide aptamers: powerful new tools for molecular medicine. J. Mol. Med. 78, 426–430 (2000).

    Article  CAS  Google Scholar 

  41. Cerchia, L., Hamm, J., Libri, D., Tavitian, B. & de Franciscis, V. Nucleic acid aptamers in cancer medicine. FEBS Lett. 528, 12–16 (2002).

    Article  CAS  Google Scholar 

  42. Maser, R. S. et al. Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature 447, 966–971 (2007). This paper describes the highly concordant nature of mouse cancer models and the human cancer genome.

    Article  ADS  CAS  Google Scholar 

  43. Lu, H., Knutson, K. L., Gad, E. & Disis, M. L. The tumor antigen repertoire identified in tumor-bearing Neu transgenic mice predicts human tumor antigens. Cancer Res. 66, 9754–9761 (2006).

    Article  CAS  Google Scholar 

  44. Chen, R. et al. Pancreatic cancer proteome: the proteins that underlie invasion, metastasis, and immunologic escape. Gastroenterology 129, 1187–1197 (2006).

    Article  Google Scholar 

  45. Chen, R. et al. Quantitative proteomics analysis reveals that proteins differentially expressed in chronic pancreatitis are also frequently involved in pancreatic cancer. Mol. Cell. Proteomics 6, 1331–1342 (2007)

    Article  CAS  Google Scholar 

  46. Chen, R. et al. Comparison of pancreas juice proteins from cancer versus pancreatitis using quantitative proteomic analysis. Pancreas 34, 70–79 (2007).

    Article  Google Scholar 

  47. Lin, Y. et al. Proteins associated with disease and clinical course in pancreas cancer: a proteomic analysis of plasma in surgical patients. J. Proteome Res. 5, 2169–2176 (2006).

    Article  CAS  Google Scholar 

  48. Yu, K. H., Rustgi, A. K. & Blair, I. A. Characterization of proteins in human pancreatic cancer serum using differential gel electrophoresis and tandem mass spectrometry. J. Proteome Res. 4, 1742–1751 (2005).

    Article  CAS  Google Scholar 

  49. Wang, Y., Wu, S. L. & Hancock, W. S. Approaches to the study of N-linked glycoproteins in human plasma using lectin affinity chromatography and nano-HPLC coupled to electrospray linear ion trap–Fourier transform mass spectrometry (LTQ/FTMS). Glycobiology 6, 514–523 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank B. L. Karger and S. L. Wu for assistance with Fig. 3.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://npg.nature.com/reprints.

Correspondence should be addressed to S.M.H. (shanash@fhcrc.org).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanash, S., Pitteri, S. & Faca, V. Mining the plasma proteome for cancer biomarkers. Nature 452, 571–579 (2008). https://doi.org/10.1038/nature06916

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06916

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing