Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Taking dendritic cells into medicine

Abstract

Dendritic cells (DCs) orchestrate a repertoire of immune responses that bring about resistance to infection and silencing or tolerance to self. In the settings of infection and cancer, microbes and tumours can exploit DCs to evade immunity, but DCs also can generate resistance, a capacity that is readily enhanced with DC-targeted vaccines. During allergy, autoimmunity and transplant rejection, DCs instigate unwanted responses that cause disease, but, again, DCs can be harnessed to silence these conditions with novel therapies. Here we present some medical implications of DC biology that account for illness and provide opportunities for prevention and therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: DC localization in T-cell areas of immune organs such as lymph nodes, as shown here.
Figure 4

Similar content being viewed by others

References

  1. Steinman, R. M. & Cohn, Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 137, 1142–1162 (1973)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998)

    ADS  CAS  PubMed  Google Scholar 

  3. Janeway, C. A. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002)

    CAS  PubMed  Google Scholar 

  4. Guermonprez, P., Valladeau, J., Zitvogel, L., Thery, C. & Amigorena, S. Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol. 20, 621–667 (2002)

    CAS  PubMed  Google Scholar 

  5. Trombetta, E. S. & Mellman, I. Cell biology of antigen processing in vitro and in vivo. Annu. Rev. Immunol. 23, 975–1028 (2005)

    CAS  PubMed  Google Scholar 

  6. Cyster, J. G. Chemokines and the homing of dendritic cells to the T cell areas of lymphoid organs. J. Exp. Med. 189, 447–450 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Itano, A. A. & Jenkins, M. K. Antigen presentation to naive CD4 T cells in the lymph node. Nature Immunol. 4, 733–739 (2003)

    CAS  Google Scholar 

  8. Randolph, G. J., Angeli, V. & Swartz, M. A. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nature Rev. Immunol. 5, 617–628 (2005)

    CAS  Google Scholar 

  9. Hawiger, D. et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194, 769–780 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Probst, H. C., McCoy, K., Okazaki, T., Honjo, T. & van den Broek, M. Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nature Immunol. 6, 280–286 (2005)

    CAS  Google Scholar 

  11. Luo, X. et al. Dendritic cells with TGF-β1 differentiate naive CD4+CD25- T cells into islet-protective Foxp3+ regulatory T cells. Proc. Natl Acad. Sci. USA 104, 2821–2826 (2007)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pulendran, B. et al. Distinct dendritic cell subsets differentially regulate the class of immune responses in vivo. Proc. Natl Acad. Sci. USA 96, 1036–1041 (1999)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maldonado-Lopez, R. et al. CD8α+ and CD8α- subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J. Exp. Med. 189, 587–592 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Napolitani, G., Rinaldi, A., Bertoni, F., Sallusto, F. & Lanzavecchia, A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nature Immunol. 6, 769–776 (2005)

    CAS  Google Scholar 

  15. Seder, R. A., Paul, W. E., Davis, M. M., Fazekas de St & Groth, B. The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J. Exp. Med. 176, 1091–1098 (1992)

    CAS  PubMed  Google Scholar 

  16. Leibundgut-Landmann, S. et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nature Immunol. 8, 630–638 (2007)

    CAS  Google Scholar 

  17. Jonuleit, H., Schmitt, E., Schuler, G., Knop, J. & Enk, A. H. Induction of interleukin 10-producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J. Exp. Med. 192, 1213–1222 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Badovinac, V. P., Messingham, K. A., Jabbari, A., Haring, J. S. & Harty, J. T. Accelerated CD8+ T-cell memory and prime-boost response after dendritic-cell vaccination. Nature Med. 11, 748–756 (2005)

    CAS  PubMed  Google Scholar 

  19. Trumpfheller, C. et al. Intensified and protective CD4+ T cell immunity at a mucosal surface after a single dose of anti-dendritic cell HIV gag fusion antibody vaccine. J. Exp. Med. 203, 607–617 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang, F.-P. et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med. 191, 435–442 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Niess, J. H. et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307, 254–258 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Lindquist, R. L. et al. Visualizing dendritic cell networks in vivo. Nature Immunol. 5, 1243–1250 (2004)

    CAS  Google Scholar 

  23. Reis e Sousa, C. Dendritic cells in a mature age. Nature Rev. Immunol. 6, 476–483 (2006)

    CAS  Google Scholar 

  24. Dudziak, D. et al. Differential antigen processing by dendritic cell subsets in vivo. Science 315, 107–111 (2007)

    ADS  CAS  PubMed  Google Scholar 

  25. Shortman, K. & Naik, S. H. Steady-state and inflammatory dendritic-cell development. Nature Rev. Immunol. 7, 19–30 (2007)

    CAS  Google Scholar 

  26. Dalod, M. et al. Interferon α/β and interleukin 12 responses to viral infections: pathways regulating dendritic cell cytokine expression in vivo.. J. Exp. Med. 195, 517–528 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Probst, H. C. & van den Broek, M. Priming of CTLs by lymphocytic choriomeningitis virus depends on dendritic cells. J. Immunol. 174, 3920–3924 (2005)

    CAS  PubMed  Google Scholar 

  28. Figdor, C. G., van Kooyk, Y. & Adema, G. J. C-type lectin receptors on dendritic cells and Langerhans cells. Nature Rev. Immunol. 2, 77–84 (2002)

    CAS  Google Scholar 

  29. Gautier, G. et al. A type I interferon autocrine-paracrine loop is involved in Toll-like receptor-induced interleukin-12p70 secretion by dendritic cells. J. Exp. Med. 201, 1435–1446 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fritz, J. H. et al. Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity 26, 445–459 (2007)

    CAS  PubMed  Google Scholar 

  31. Coutanceau, E. et al. Selective suppression of dendritic cell functions by Mycobacterium ulcerans toxin mycolactone. J. Exp. Med. 204, 1395–1403 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Querec, T. et al. Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J. Exp. Med. 203, 413–424 (2006)

    PubMed  PubMed Central  Google Scholar 

  33. Albert, M. L., Sauter, B. & Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392, 86–89 (1998)

    ADS  CAS  PubMed  Google Scholar 

  34. Khader, S. A. et al. Interleukin 12p40 is required for dendritic cell migration and T cell priming after Mycobacterium tuberculosis infection. J. Exp. Med. 203, 1805–1815 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Geijtenbeek, T. B. H. et al. DC-SIGN, a dendritic cell specific HIV-1 binding protein that enhances trans-infection of T cells. Cell 100, 587–597 (2000)

    CAS  PubMed  Google Scholar 

  36. Colonna, M., Krug, A. & Cella, M. Interferon-producing cells: on the front line in immune responses against pathogens. Curr. Opin. Immunol. 14, 373–379 (2002)

    CAS  PubMed  Google Scholar 

  37. Boscardin, S. B. et al. Antigen targeting to dendritic cells elicits long-lived T cell help for antibody responses. J. Exp. Med. 203, 599–606 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Soares, H. et al. A subset of dendritic cells induces CD4+ T cells to produce IFN-γ by an IL-12-independent but CD70-dependent mechanism in vivo.. J. Exp. Med. 204, 1095–1106 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bozzacco, L. et al. DEC-205 receptor on dendritic cells mediates presentation of HIV gag protein to CD8+ T cells in a spectrum of human MHC I haplotypes. Proc. Natl Acad. Sci. USA 104, 1289–1294 (2007)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Delneste, Y. et al. Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 17, 353–362 (2002)

    CAS  PubMed  Google Scholar 

  41. Gabrilovich, D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nature Rev. Immunol. 4, 941–952 (2004)

    CAS  Google Scholar 

  42. Kortylewski, M. et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nature Med. 11, 1314–1321 (2005)

    CAS  PubMed  Google Scholar 

  43. Ghiringhelli, F. et al. Tumor cells convert immature myeloid dendritic cells into TGF-β-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J. Exp. Med. 202, 919–929 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Aspord, C. et al. Breast cancer instructs dendritic cells to prime interleukin 13-secreting CD4+ T cells that facilitate tumor development. J. Exp. Med. 204, 1037–1047 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Vicari, A. P., Caux, C. & Trinchieri, G. Tumour escape from immune surveillance through dendritic cell inactivation. Semin. Cancer Biol. 12, 33–42 (2002)

    CAS  PubMed  Google Scholar 

  46. Dhodapkar, K. M., Krasovsky, J., Williamson, B. & Dhodapkar, M. V. Anti-tumor monoclonal antibodies enhance cross-presentation of cellular antigens and the generation of myeloma-specific killer T cells by dendritic cells. J. Exp. Med. 195, 125–133 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kalergis, A. M. & Ravetch, J. V. Inducing tumor immunity through the selective engagement of activating Fcγ receptors on dendritic cells. J. Exp. Med. 195, 1653–1659 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Blattman, J. N. & Greenberg, P. D. Cancer immunotherapy: a treatment for the masses. Science 305, 200–205 (2004)

    ADS  CAS  PubMed  Google Scholar 

  49. Shankaran, V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001)

    ADS  CAS  PubMed  Google Scholar 

  50. Figdor, C. G., De Vries, I. J., Lesterhuis, W. J. & Melief, C. J. Dendritic cell immunotherapy: mapping the way. Nature Med. 10, 475–480 (2004)

    CAS  PubMed  Google Scholar 

  51. Banchereau, J. & Palucka, A. K. Dendritic cells as therapeutic vaccines against cancer. Nature Rev. Immunol. 5, 296–306 (2005)

    CAS  Google Scholar 

  52. Schuler-Thurner, B. et al. Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J. Exp. Med. 195, 1279–1288 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Paczesny, S. et al. Expansion of melanoma-specific cytolytic CD8+ T cell precursors in patients with metastatic melanoma vaccinated with CD34+ progenitor-derived dendritic cells. J. Exp. Med. 199, 1503–1511 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Fernandez, N. C. et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nature Med. 5, 405–411 (1999)

    CAS  PubMed  Google Scholar 

  55. Lucas, M., Schachterle, W., Oberle, K., Aichele, P. & Diefenbach, A. Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity 26, 503–517 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Stary, G. et al. Tumoricidal activity of TLR7/8-activated inflammatory dendritic cells. J. Exp. Med. 204, 1441–1451 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Palucka, A. K. et al. Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8+ T-cell immunity. J. Immunother. 29, 545–557 (2006)

    CAS  PubMed  Google Scholar 

  58. O'Rourke, M. G. et al. Durable complete clinical responses in a phase I/II trial using an autologous melanoma cell/dendritic cell vaccine. Cancer Immunol. Immunother. 52, 387–395 (2003)

    PubMed  Google Scholar 

  59. De Vries, I. J. et al. Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res. 63, 12–17 (2003)

    CAS  PubMed  Google Scholar 

  60. Banchereau, J. et al. Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine. Cancer Res. 61, 6451–6458 (2001)

    CAS  PubMed  Google Scholar 

  61. Obeid, M. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Med. 13, 54–61 (2007)

    CAS  PubMed  Google Scholar 

  62. Gilboa, E. & Vieweg, J. Cancer immunotherapy with mRNA-transfected dendritic cells. Immunol. Rev. 199, 251–263 (2004)

    CAS  PubMed  Google Scholar 

  63. Soiffer, R. et al. Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA 95, 13141–13146 (1998)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Laheru, D. & Jaffee, E. M. Immunotherapy for pancreatic cancer—science driving clinical progress. Nature Rev. Cancer 5, 459–467 (2005)

    CAS  Google Scholar 

  65. Fujii, S., Liu, K., Smith, C., Bonito, A. J. & Steinman, R. M. The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J. Exp. Med. 199, 1607–1618 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Banchereau, J. & Pascual, V. Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25, 383–392 (2006)

    CAS  PubMed  Google Scholar 

  67. Lowes, M. A. et al. Increase in TNFα and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a). Proc. Natl Acad. Sci. USA 102, 19057–19062 (2005)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Siegal, F. P. et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835–1837 (1999)

    CAS  PubMed  Google Scholar 

  70. Asselin-Paturel, C. & Trinchieri, G. Production of type I interferons: plasmacytoid dendritic cells and beyond. J. Exp. Med. 202, 461–465 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tian, J. et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nature Immunol. 8, 487–496 (2007)

    CAS  Google Scholar 

  72. Blanco, P., Palucka, A. K., Gill, M., Pascual, V. & Banchereau, J. Induction of dendritic cell differentiation by IFN-α in systemic lupus erythematosus. Science 294, 1540–1543 (2001)

    ADS  CAS  PubMed  Google Scholar 

  73. Nestle, F. O. et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-α production. J. Exp. Med. 202, 135–143 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hue, S. et al. Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J. Exp. Med. 203, 2473–2483 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Tarbell, K. V. et al. Dendritic cell-expanded, islet-specific, CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice. J. Exp. Med. 204, 191–201 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lambrecht, B. N. & Hammad, H. Taking our breath away: dendritic cells in the pathogenesis of asthma. Nature Rev. Immunol. 3, 994–1003 (2003)

    CAS  Google Scholar 

  77. Soumelis, V. et al. Human epithelial cells trigger dendritic cell-mediated allergic inflammation by producing TSLP. Nature Immunol. 3, 673–680 (2002)

    CAS  Google Scholar 

  78. Traidl-Hoffmann, C. et al. Pollen-associated phytoprostanes inhibit dendritic cell interleukin-12 production and augment T helper type 2 cell polarization. J. Exp. Med. 201, 627–636 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hammad, H. et al. Activation of the D prostanoid 1 receptor suppresses asthma by modulation of lung dendritic cell function and induction of regulatory T cells. J. Exp. Med. 204, 357–367 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Inaba, K. et al. Efficient presentation of phagocytosed cellular fragments on the MHC class II products of dendritic cells. J. Exp. Med. 188, 2163–2173 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ochando, J. C. et al. Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nature Immunol. 7, 652–662 (2006)

    CAS  Google Scholar 

  82. Hackstein, H. & Thomson, A. W. Dendritic cells: emerging pharmacological targets of immunosuppressive drugs. Nature Rev. Immunol. 4, 24–34 (2004)

    CAS  Google Scholar 

  83. Shlomchik, W. D. et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 285, 412–415 (1999)

    CAS  PubMed  Google Scholar 

  84. Merad, M. et al. Depletion of host Langerhans cells before transplantation of donor alloreactive T cells prevents skin graft-versus-host disease. Nature Med. 10, 510–517 (2004)

    CAS  PubMed  Google Scholar 

  85. Merad, M. et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nature Immunol. 3, 1135–1141 (2002)

    CAS  Google Scholar 

  86. Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunol. 2, 361–367 (2001)

    CAS  Google Scholar 

  87. Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β- and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Bousso, P. & Robey, E. Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nature Immunol. 4, 579–585 (2003)

    CAS  Google Scholar 

  89. Shakhar, G. et al. Stable T cell–dendritic cell interactions precede the development of both tolerance and immunity in vivo. Nature Immunol. 6, 707–714 (2005)

    CAS  Google Scholar 

  90. Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogation priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17, 211–220 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Heath, W. R. et al. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol. Rev. 199, 9–26 (2004)

    CAS  PubMed  Google Scholar 

  92. Pulendran, B. Variegation of the immune response with dendritic cells and pathogen recognition receptors. J. Immunol. 174, 2457–2465 (2005)

    CAS  PubMed  Google Scholar 

  93. Stranges, P. B. et al. Elimination of antigen-presenting cells and autoreactive T cells by Fas contributes to prevention of autoimmunity. Immunity 26, 629–641 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ohteki, T. et al. Essential roles of DC-derived IL-15 as a mediator of inflammatory responses in vivo. J. Exp. Med. 203, 2329–2338 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Granucci, F. et al. Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nature Immunol. 2, 882–888 (2001)

    CAS  Google Scholar 

  96. Reis e Sousa, C. et al. In vivo microbial stimulation induces rapid CD40L- independent production of IL-12 by dendritic cells and their re-distribution to T cell areas. J. Exp. Med. 186, 1819–1829 (1997)

    CAS  PubMed  Google Scholar 

  97. Sporri, R. & Reis e Sousa, C. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nature Immunol. 6, 163–170 (2005)

    Google Scholar 

  98. Sallusto, F. et al. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur. J. Immunol. 28, 2760–2769 (1998)

    CAS  PubMed  Google Scholar 

  99. Piqueras, B., Connolly, J., Freitas, H., Palucka, A. K. & Banchereau, J. Upon viral exposure, myeloid and plasmacytoid dendritic cells produce 3 waves of distinct chemokines to recruit immune effectors. Blood 107, 2613–2618 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Ito, T. et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J. Exp. Med. 202, 1213–1223 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kissenpfennig, A. et al. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22, 643–654 (2005)

    CAS  PubMed  Google Scholar 

  102. Del Rio, M. L., Rodriguez-Barbosa, J. I., Kremmer, E. & Forster, R. CD103- and CD103+ bronchial lymph node dendritic cells are specialized in presenting and cross-presenting innocuous antigen to CD4+ and CD8+ T Cells. J. Immunol. 178, 6861–6866 (2007)

    CAS  PubMed  Google Scholar 

  103. Yoneyama, H. et al. Plasmacytoid DCs help lymph node DCs to induce anti-HSV CTLs. J. Exp. Med. 202, 425–435 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  104. D'Amico, A. & Wu, L. The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3. J. Exp. Med. 198, 293–303 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Karsunky, H., Merad, M., Cozzio, A., Weissman, I. L. & Manz, M. G. Flt3 ligand regulates dendritic cell development from Flt3+ lymphoid and myeloid-committed progenitors to Flt3+ dendritic cells in vivo. J. Exp. Med. 198, 305–313 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Leon, B., Lopez-Bravo, M. & Ardavin, C. Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26, 519–531 (2007)

    CAS  PubMed  Google Scholar 

  107. Liu, K. et al. Origin of dendritic cells in peripheral lymphoid organs of mice. Nature Immunol. 8, 578–583 (2007)

    CAS  Google Scholar 

  108. Varol, C. et al. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J. Exp. Med. 204, 171–180 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank C. Moberg and M. Nussenzweig for extensive comments and J. Adams for assistance with the manuscript. We are grateful to our patients and colleagues, for their many contributions, and to the NIH and several foundations for support. A version of the review with a more complete bibliography is published on the authors’ websites: http://www.biir.org and http://www.rockefeller.edu/labheads/steinman/generalReviews.php.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph M. Steinman.

Ethics declarations

Competing interests

R.M.S is on the scientific advisory board of Celldex and Argos Therapeutics, which both design dendritic-cell-based vaccines; J.B. has stock options of Argos Therapeutics and ODC Therapy, which both focus on dendritic cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinman, R., Banchereau, J. Taking dendritic cells into medicine. Nature 449, 419–426 (2007). https://doi.org/10.1038/nature06175

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06175

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing