Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Targeting the translational apparatus to improve leukemia therapy: roles of the PI3K/PTEN/Akt/mTOR pathway

Abstract

It has become apparent that regulation of protein translation is an important determinant in controlling cell growth and leukemic transformation. The phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homologue deleted on chromosome ten (PTEN)/Akt/mammalian target of rapamycin (mTOR) pathway is often implicated in sensitivity and resistance to therapy. Dysregulated signaling through the PI3K/PTEN/Akt/mTOR pathway is often the result of genetic alterations in critical components in this pathway as well as mutations at upstream growth factor receptors. Furthermore, this pathway is activated by autocrine transformation mechanisms. PTEN is a critical tumor suppressor gene and its dysregulation results in the activation of Akt. PTEN is often mutated, silenced and is often haploinsufficient. The mTOR complex1 (mTORC1) regulates the assembly of the eukaryotic initiation factor4F complex, which is critical for the translation of mRNAs that are important for cell growth, prevention of apoptosis and transformation. These mRNAs have long 5′-untranslated regions that are G+C rich, rendering them difficult to translate. Elevated mTORC1 activity promotes the translation of these mRNAs via the phosphorylation of 4E-BP1. mTORC1 is a target of rapamycin and novel active-site inhibitors that directly target the TOR kinase activity. Although rapamycin and novel rapalogs are usually cytostatic and not cytotoxic for leukemic cells, novel inhibitors that target the kinase activities of PI3K and mTOR may prove more effective for leukemia therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Steelman LS, Abrams SL, Whelan J, Bertrand FE, Ludwig DE, Basecke J et al. Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and JAK/STAT pathways to leukemia. Leukemia 2008; 22: 686–707.

    CAS  PubMed  Google Scholar 

  2. Martelli AM, Evangelisti C, Chiarini F, Grimaldi C, Manzoli L, McCubrey JA . Targeting the PI3K/AKT/mTOR signaling network in acute myelogenous leukemia. Expert Opin Invest Drugs 2009; 18: 1333–1349.

    CAS  Google Scholar 

  3. Sujobert P, Bardet V, Cornillet-Lefebvre P, Hayflick JS, Prie N, Verdier F et al. Essential role for the p110δ isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia. Blood 2005; 106: 1063–1066.

    CAS  PubMed  Google Scholar 

  4. Tamburini J, Elie C, Bardet V, Chapuis N, Park S, Broët P et al. Constitutive phosphoinositide 3-kinase/Akt activation represents a favorable prognostic factor in de novo acute myelogenous leukemia patients. Blood 2007; 110: 1025–1028.

    CAS  PubMed  Google Scholar 

  5. Zebedin E, Simma O, Schuster C, Putz EM, Fajmann S, Warsch W et al. Leukemic challenge unmasks a requirement for PI3Kδ in NK cell-mediated tumor surveillance. Blood 2008; 112: 4655–4664.

    CAS  PubMed  Google Scholar 

  6. Cornillet-Lefebvre P, Cuccuini W, Bardet V, Tamburini J, Gillot L, Ifrah N et al. Constitutive phosphoinositide 3-kinase activation in acute myeloid leukemia is not due to p110δ mutations. Leukemia 2006; 20: 374–376.

    CAS  PubMed  Google Scholar 

  7. Billottet C, Grandage VL, Gale RE, Quattropani A, Rommel C, Vanhaesebroeck B et al. A selective inhibitor of the p110δ isoform of PI 3-kinase inhibits AML cell proliferation and survival and increases the cytotoxic effects of VP16. Oncogene 2006; 25: 6648–6659.

    CAS  PubMed  Google Scholar 

  8. Staal SP, Hartley JW . Thymic lymphoma induction by the AKT8 murine retrovirus. J Exp Med 1988; 167: 1259–1264.

    CAS  PubMed  Google Scholar 

  9. Staal SP . Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci USA 1987; 84: 5034–5037.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Franke TF, Kaplan DR, Cantley LC, Toker A . Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 1997; 275: 665–668.

    CAS  PubMed  Google Scholar 

  11. Coffer PJ, Woodgett JR . Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. Eur J Biochem 1991; 201: 475–481.

    CAS  PubMed  Google Scholar 

  12. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr Biol 1997; 7: 261–269.

    CAS  PubMed  Google Scholar 

  13. Du K, Montminy M . CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem 1998; 273: 32377–32379.

    CAS  PubMed  Google Scholar 

  14. Brennan P, Babbage JW, Burgering BM, Groner B, Reif K, Cantrell DA . Phosphatidylinositol 3-kinase couples the interleukin-2 receptor to the cell cycle regulator E2F. Immunity 1997; 7: 679–689.

    CAS  PubMed  Google Scholar 

  15. Kane LP, Shapiro VS, Stokoe D, Weiss A . Induction of NF-kappaB by the Akt/PKB kinase. Curr Biol 1999; 9: 601–604.

    CAS  PubMed  Google Scholar 

  16. Kops GJ, Burgering BM . Forkhead transcription factors are targets of signalling by the proto-oncogene PKB (C-AKT). J Anat 2000; 197: 571–574.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nuñez G . Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 1997; 278: 687–689.

    CAS  PubMed  Google Scholar 

  18. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA . Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378: 785–789.

    CAS  PubMed  Google Scholar 

  19. Chalhoub N, Baker SJ . PTEN and the PI3-kinase pathway in cancer. Ann Rev Pathol Mech Dis 2009; 4: 127–150.

    CAS  Google Scholar 

  20. Keniry M, Parsons R . The role of PTEN signaling perturbations in cancer and in targeted therapy. Oncogene 2008; 18: 5477–5485.

    Google Scholar 

  21. Carracedo A, Pandolfi PP . The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 2008; 27: 5527–5541.

    CAS  PubMed  Google Scholar 

  22. Salmena L, Carracedo A, Pandolfi PP . Tenets of PTEN tumor suppression. Cell 2008; 133: 403–414.

    CAS  PubMed  Google Scholar 

  23. Mahimainathan L, Choudhury GG . Inactivation of platelet-derived growth factor receptor by the tumor suppressor PTEN provides a novel mechanism of action of the phosphatase. J Biol Chem 2004; 279: 15258–15268.

    CAS  PubMed  Google Scholar 

  24. Dey N, Crosswell HE, De P, Parsons R, Peng Q, Su JD et al. The protein phosphatase activity of PTEN regulates SRC family kinases and controls glioma migration. Cancer Res 2008; 68: 1862–1871.

    CAS  PubMed  Google Scholar 

  25. Myers MP, Pass I, Batty IH, Van der Kaay J, Stolarov JP, Hemmings BA et al. The lipid phosphatase activity of PTEN is critical for its tumor suppressor function. Proc Natl Acad Sci USA 1998; 95: 13513–13518.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pesche S, Latil A, Muzeau F, Cussenot O, Fournier G, Longy M et al. PTEN/MMAC1/TEP1 involvement in primary prostate cancers. Oncogene 1998; 16: 2879–2883.

    CAS  PubMed  Google Scholar 

  27. Silva A, Yunes JA, Cardoso BA, Martins LR, Jotta PY, Abecasis M et al. PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability. J Clin Invest 2008; 118: 3762–3774.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gutierrez A, Sanda T, Grebliunaite R, Carracedo A, Salmena L, Ahn Y et al. High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood 2009; 114: 647–650.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Leslie NR, Foti M . Not in my genes: non-genomic loss of PTEN function in cancer. Trends Pharmacol Sci 2011; 32: 131–140.

    CAS  PubMed  Google Scholar 

  30. Steelman LS, Navolanic PN, Sokolosky M, Taylor JR, Lehmann BD, Chappell WH et al. Suppression of PTEN function increases breast cancer chemotherapeutic drug resistance while conferring sensitivity of mTOR inhibitors. Oncogene 2008; 27: 4086–4095.

    CAS  PubMed  Google Scholar 

  31. Nardella C, Chen Z, Salmena L, Carracedo A, Alimonti A, Egia A et al. Aberrant Rheb-mediated mTORC1 activation and Pten haploinsufficiency are cooperative oncogenic events. Genes Dev 2008; 22: 2172–2177.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Alimonti A, Carracedo A, Clohessy JG, Trotman LC, Nardella C, Egia A et al. Subtle variations in Pten dose determine cancer susceptibility. Nat Genet 2010; 42: 454–458.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Poliseno L, Salmena L, Riccardi L, Fornari A, Song MS, Hobbs RM et al. Identification of the miR-106b25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal 2010; 3: ra29.

    PubMed  PubMed Central  Google Scholar 

  34. Mavrakis KJ, Wolfe AL, Oricchio E, Palomero T, de Keersmaecker K, McJunkin K et al. Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nat Cell Biol 2010; 12: 372–379.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. A microRNA polycistron as a potential human oncogene. Nature 2005; 435: 828–833.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. He L . Posttranslational regulation of PTEN dosage by noncoding RNAs. Sci Signal 2010; 3: 146pe39.

    Google Scholar 

  37. DeMarzo AM, Nelson WG, Isaacs WB, Epstein JI . Pathological and molecular aspects of prostate cancer. Lancet 2003; 361: 955–964.

    CAS  PubMed  Google Scholar 

  38. Gurel B, Iwata T, Koh CM, Jenkins RB, Lan F, Van Dang C et al. Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod Pathol 2008; 21: 1156–1167.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Shohet JM, Hicks MJ, Plon SE, Burlingame SM, Stuart S, Chen SY et al. Minichromosome maintenance protein MCM7 is a direct target of the MYCN transcription factor in neuroblastoma. Cancer Res 2002; 62: 1123–1128.

    CAS  PubMed  Google Scholar 

  40. Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J et al. Genomic targets of the human c-Myc protein. Genes Dev 2003; 17: 1115–1129.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Schulte JH, Horn S, Otto T, Samans B, Heukamp LC, Eilers UC et al. MYCN regulates oncogenic MicroRNAs in neuroblastoma. Int J Cancer 2008; 122: 699–704.

    CAS  PubMed  Google Scholar 

  42. Harrison PM, Zheng D, Zhang Z, Carriero N, Gerstein M . Transcribed processed pseudogenes in the human genome: an intermediate form of expressed retrosequence lacking protein-coding ability. Nucleic Acids Res 2005; 33: 2374–2383.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP . A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010; 465: 1033–1038.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang J, Chai L, Gao C, Fowles TC, Alipio Z, Dang H et al. SALL4 is a key regulator of survival and apoptosis in human leukemic cells. Blood 2008; 112: 805–813.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lu J, Jeong HW, Kong N, Yang Y, Carroll J, Luo HR et al. Stem cell factor SALL4 represses the transcriptions of PTEN and SALL1 through an epigenetic repressor complex. PLoS One 2009; 4: e5577.

    PubMed  PubMed Central  Google Scholar 

  46. Yu H, Li Y, Gao C, Fabien L, Jia Y, Lu J et al. Relevant mouse model for human monocytic leukemia through Cre/lox-controlled myeloid-specific deletion of PTEN. Leukemia 2010; 4: 1077–1080.

    Google Scholar 

  47. Tang Y, Eng C . p53 down-regulates phosphatase and tensin homologue deleted on chromosome 10 protein stability partially through caspase-mediated degradation in cells with proteasome dysfunction. Cancer Res 2006; 66: 6139–6148.

    CAS  PubMed  Google Scholar 

  48. Tang Y, Eng C . PTEN autoregulates its expression by stabilization of p53 in a phosphatase-independent manner. Cancer Res 2006; 66: 736–742.

    CAS  PubMed  Google Scholar 

  49. Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 2005; 436: 725–730.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Van Wang X, Jiang X . Post-translational regulation of PTEN. Oncogene 2008; 27: 5454–5463.

    Google Scholar 

  51. Wang X, Trotman LC, Koppie T, Alimonti A, Chen Z, Gao Z et al. NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 2007; 128: 129–139.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Themsche C, Leblanc V, Parent S, Asselin E . X-linked inhibitor of apoptosis protein (XIAP) regulates PTEN ubiquitination, content, and compartmentalization. J Biol Chem 2009; 284: 20462–20466.

    PubMed  PubMed Central  Google Scholar 

  53. Maccario H, Perera NM, Gray A, Downes CP, Leslie NR . Ubiquitination of PTEN (phosphatase and tensin homolog) inhibits phosphatase activity and is enhanced by membrane targeting and hyperosmotic stress. J Biol Chem 2010; 285: 12620–12628.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kwon J, Lee SR, Yang KS, Ahn Y, Kim YJ, Stadtman ER et al. Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc Natl Acad Sci USA 2004; 101: 16419–16424.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Silva A, Jotta PY, Silveira AB, Ribeiro D, Brandalise SR, Yunes JA et al. Regulation of PTEN by CK2 and Notch1 in primary T-cell acute lymphoblastic leukemia: rationale for combined use of CK2- and gamma-secretase inhibitors. Haematologica 2010; 95: 674–678.

    CAS  PubMed  Google Scholar 

  56. Cao J, Schulte J, Knight A, Leslie NR, Zagozdzon A, Bronson R et al. Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity. EMBO J 2009; 28: 1505–1517.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Odriozola L, Singh G, Hoang T, Chan AM . Regulation of PTEN activity by its carboxyl-terminal autoinhibitory domain. J Biol Chem 2007; 282: 23306–23315.

    CAS  PubMed  Google Scholar 

  58. Rahdar M, Inoue T, Meyer T, Zhang J, Vazquez F, Devreotes PN . A phosphorylation-dependent intramolecular interaction regulates the membrane association and activity of the tumor suppressor PTEN. Proc Natl Acad Sci USA 2009; 106: 480–485.

    CAS  PubMed  Google Scholar 

  59. Al-Khouri AM, Ma Y, Togo SH, Williams S, Mustelin T . Cooperative phosphorylation of the tumor suppressor phosphatase and tensin homologue (PTEN) by casein kinases and glycogen synthase kinase 3beta. J Biol Chem 2005; 280: 35195–35202.

    CAS  PubMed  Google Scholar 

  60. Maccario H, Perera NM, Davidson L, Downes CP, Leslie NR . PTEN is destabilized by phosphorylation on Thr366. Biochem J 2007; 405: 439–444.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yim EK, Peng G, Dai H, Hu R, Li K, Lu Y et al. Rak functions as a tumor suppressor by regulating PTEN protein stability and function. Cancer Cell 2009; 15: 304–314.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Okahara F, Ikawa H, Kanaho Y, Maehama T . Regulation of PTEN phosphorylation and stability by a tumor suppressor candidate protein. J Biol Chem 2004; 279: 45300–45303.

    CAS  PubMed  Google Scholar 

  63. Okahara F, Itoh K, Nakagawara A, Murakami M, Kanaho Y, Maehama T . Critical role of PICT-1, a tumor suppressor candidate, in phosphatidylinositol 3,4,5-trisphosphate signals and tumorigenic transformation. Mol Biol Cell 2006; 17: 4888–4895.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Fine B, Hodakoski C, Koujak S, Su T, Saal LH, Maurer M et al. Activation of the PI3K pathway in cancer through inhibition of PTEN by exchange factor P-REX2a. Science 2009; 325: 1261–1265.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. He L, Ingram A, Rybak AP, Tang D . Shank-interacting protein-like 1 promotes tumorigenesis via PTEN inhibition in human tumor cells. J Clin Invest 2010; 120: 2094–2108.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Okumura K, Zhao M, Depinho RA, Furnari FB, Cavenee WK . Cellular transformation by the MSP58 oncogene is inhibited by its physical interaction with the PTEN tumor suppressor. Proc Natl Acad Sci USA 2005; 102: 2703–2706.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gao T, Furnari F, Newton AC . PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell 2005; 18: 13–24.

    CAS  PubMed  Google Scholar 

  68. Lioubin MN, Algate PA, Tsai S, Carlberg K, Aebersold A, Rohrschneider LR . p150Ship, a signal transduction molecule with inositol polyphosphate-5-phosphatase activity. Genes Dev 1996; 10: 1084–1095.

    CAS  PubMed  Google Scholar 

  69. Muraille E, Pesesse X, Kuntz C, Erneux C . Distribution of the src-homology-2-domain-containing inositol 5-phosphatase SHIP-2 in both non-haemopoietic and haemopoietic cells and possible involvement in SHIP-2 in negative signaling of B-cells. Biochem J 1999; 342: 697–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Janes MR, Limon JJ, So L, Chen J, Lim RJ, Chavez MA et al. Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nat Med 2010; 16: 205–213.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Carayol N, Vakana E, Sassano A, Kaur S, Goussetis DJ, Glaser H et al. Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells. Proc Natl Acad Sci USA 2010; 107: 12469–12474.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC . Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway. Mol Cell 2002; 10: 151–162.

    CAS  PubMed  Google Scholar 

  73. Bai X, Ma D, Liu A, Shen X, Wang QJ, Liu Y et al. Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. Science 2007; 318: 977–980.

    CAS  PubMed  Google Scholar 

  74. Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009; 137: 873–886.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 2008; 118: 3065–3074.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hresko RC, Mueckler M . mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem 2005; 280: 40406–40416.

    CAS  PubMed  Google Scholar 

  77. Wendel HG, De Stanchina E, Fridman JS, Malina A, Ray S, Kogan S et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 2004; 428: 332–337.

    CAS  PubMed  Google Scholar 

  78. Fingar DC, Blenis J . Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 2004; 23: 3151–3171.

    CAS  PubMed  Google Scholar 

  79. Martelli AM, Evangelisti C, Chiarini F, McCubrey JA . The phosphatidylinositol 3-kinase/Akt/mTOR signaling network as a therapeutic target in acute myelogenous leukemia patients. Oncotarget 2010; 1: 89–103.

    PubMed  PubMed Central  Google Scholar 

  80. Martelli AM, Evangelisti C, Chiarini F, Grimaldi C, Cappellini A, Ognibene A et al. The emerging role of the phosphatiylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in normal myelopoiesis and leukemogensis. Biochim Biophys Acta 2010; 1803: 991–1002.

    CAS  PubMed  Google Scholar 

  81. Martelli AM, Evangelisti C, Chiarini F, Grimaldi C, McCubrey JA . The emerging role of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in cancer stem cell biology. Cancers 2010; 2: 1567–1596.

    Google Scholar 

  82. Tokunaga C, Yoshino K, Yonezawa K . mTOR integrates amino acid- and energy-sensing pathways. Biochem Biophys Res Commun 2004; 313: 443–446.

    CAS  PubMed  Google Scholar 

  83. Mobasheri A, Richardson S, Mobasheri R, Shakibaei M, Hoyland JA . Hypoxia inducible factor-1 and facilitative glucose transporters GLUT1 and GLUT3: putative molecular components of the oxygen and glucose sensing apparatus in articular chondrocytes. Histol Histopathol 2005; 20: 1327–1338.

    CAS  PubMed  Google Scholar 

  84. Thomas A, El Rouby S, Reed JC, Krajewski S, Silber R, Potmesil M et al. Drug-induced apoptosis in B-cell chronic lymphocytic leukemia: relationship between p53 gene mutation and bcl-2/bax proteins in drug resistance. Oncogene 1996; 12: 1055–1062.

    CAS  PubMed  Google Scholar 

  85. Nuessler V, Stötzer O, Gullis E, Pelka-Fleischer R, Pogrebniak A, Gieseler F et al. Bcl-2, bax and bcl-xL expression in human sensitive and resistant leukemia cell lines. Leukemia 1999; 13: 1864–1872.

    CAS  PubMed  Google Scholar 

  86. Buggins AG, Pepper CJ . The role of Bcl-2 family proteins in chronic lymphocytic leukaemia. Leuk Res 2010; 34: 837–842.

    CAS  PubMed  Google Scholar 

  87. Capitani N, Baldari CT . The Bcl-2 family as a rational target for the treatment of B-cell chronic lymphocytic leukaemia. Curr Med Chem 2010; 17: 801–811.

    CAS  PubMed  Google Scholar 

  88. Wang JM, Chao JR, Chen W, Kuo ML, Yen JJ, Yang-Yen HF . The antiapoptotic gene Mcl-1 is upregulated by the phosphatidylinositol 3-kinase/Akt signaling pathway through a transcription factor complex containing CREB. Mol Cell Biol 1999; 19: 6195–6206.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Pugazhenthi S, Nesterova A, Sable C, Heidenreich KA, Boxer LM, Heasley LE et al. Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J Biol Chem 2000; 275: 10761–10766.

    CAS  PubMed  Google Scholar 

  90. Steelman LS, Bertrand FE, McCubrey JA . The complexity of PTEN: mutation, marker and potential target for therapeutic intervention. Expert Opin Ther Targets 2004; 8: 537–550.

    CAS  PubMed  Google Scholar 

  91. Huang H, Cheville JC, Pan Y, Roche PC, Schmidt LJ, Tindall DJ . PTEN induces chemosensitivity in PTEN-mutated prostate cancer cells by suppression of Bcl-2 expression. J Biol Chem 2001; 276: 38830–38836.

    CAS  PubMed  Google Scholar 

  92. Wilson BE, Mochon E, Boxer LM . Induction of bcl-2 expression by phosphorylated CREB proteins during B-cell activation and rescue from apoptosis. Mol Cell Biol 1996; 16: 5546–5556.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Belkhiri A, Dar AA, Zaika A, Kelley M, El-Rifai W . t-Darpp promotes cancer cell survival by up-regulation of Bcl2 through Akt-dependent mechanism. Cancer Res 2008; 68: 395–403.

    CAS  PubMed  Google Scholar 

  94. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91: 231–241.

    CAS  PubMed  Google Scholar 

  95. Datta K, Franke TF, Chan TO, Makris A, Yang SI, Kaplan DR et al. AH/PH domain-mediated interaction between Akt molecules and its potential role in Akt regulation. Mol Cell Biol 1995; 15: 2304–2310.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Fletcher JI, Huang DC . Controlling the cell death mediators Bax and Bak: puzzles and conundrums. Cell Cycle 2008; 7: 39–44.

    CAS  PubMed  Google Scholar 

  97. Kennedy SG, Kandel ES, Cross TK, Hay N . Akt/protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol Cell Biol 1999; 19: 5800–5810.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. High LM, Szymanska B, Wilczynska-Kalak U, Barber N, O’Brien R, Khaw SL et al. The Bcl-2 homology domain 3 mimetic ABT-737 targets the apoptotic machinery in acute lymphoblastic leukemia resulting in synergistic in vitro and in vivo interactions with established drugs. Mol Pharmacol 2010; 77: 483–494.

    CAS  PubMed  Google Scholar 

  99. Kuroda J, Kimura S, Andreeff M, Ashihara E, Kamitsuji Y, Yokota A et al. ABT-737 is a useful component of combinatory chemotherapies for chronic myeloid leukaemias with diverse drug-resistance mechanisms. Br J Haematol 2008; 140: 181–190.

    CAS  PubMed  Google Scholar 

  100. Stolz C, Hess G, Hähnel PS, Grabellus F, Hoffarth S, Schmid KW et al. Targeting Bcl-2 family proteins modulates the sensitivity of B-cell lymphoma to rituximab-induced apoptosis. Blood 2008; 112: 3312–3321.

    CAS  PubMed  Google Scholar 

  101. Paoluzzi L, Gonen M, Bhagat G, Furman RR, Gardner JR, Scotto L et al. The BH3-only mimetic ABT-737 synergizes the antineoplastic activity of proteasome inhibitors in lymphoid malignancies. Blood 2008; 112: 2906–2916.

    CAS  PubMed  Google Scholar 

  102. Pepper C, Lin TT, Pratt G, Hewamana S, Brennan P, Hiller L et al. Mcl-1 expression has in vitro and in vivo significance in chronic lymphocytic leukemia and is associated with other poor prognostic markers. Blood 2008; 112: 3807–3817.

    CAS  PubMed  Google Scholar 

  103. Zimmerman EI, Dollins CM, Crawford M, Grant S, Nana-Sinkam SP, Richards KL et al. Lyn kinase-dependent regulation of miR181 and myeloid cell leukemia-1 expression: implications for drug resistance in myelogenous leukemia. Mol Pharmacol 2010; 78: 811–817.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Stewart ML, Fire E, Keating AE, Walensky LD . The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer. Nat Chem Biol 2010; 6: 595–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Balakrishnan K, Burger JA, Wierda WG, Gandhi V . AT-101 induces apoptosis in CLL B cells and overcomes stromal cell-mediated Mcl-1 induction and drug resistance. Blood 2009; 113: 149–153.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Brunelle JK, Ryan J, Yecies D, Opferman JT, Letai A . MCL-1-dependent leukemia cells are more sensitive to chemotherapy than BCL-2-dependent counterparts. J Cell Biol 2009; 187: 429–442.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ley R, Ewings KE, Hadfield K, Cook SJ . Regulatory phosphorylation of Bim: sorting out the ERK from JNK. Cell Death Differ 2005; 12: 1008–1014.

    CAS  PubMed  Google Scholar 

  108. Qi XJ, Wildey GM, Howe PH . Evidence that Ser87 of BimEL is phosphorylated by Akt and regulates BimEL apoptotic function. J Biol Chem 2006; 281: 813–823.

    CAS  PubMed  Google Scholar 

  109. Gillings AS, Balmanno K, Wiggins CM, Johnson M, Cook SJ . Apoptosis and autophagy: BIM as a mediator of tumour cell death in response to oncogene-targeted therapeutics. FEBS J 2009; 276: 6050–6062.

    CAS  PubMed  Google Scholar 

  110. Lei K, Davis RJ . JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci USA 2003; 100: 2432–2437.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Myatt SS, Lam EWF . The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer 2007; 7: 847–859.

    CAS  PubMed  Google Scholar 

  112. Bachmann PS, Piazza RG, Janes ME, Wong NC, Davies C, Mogavero A et al. Epigenetic silencing of BIM in glucocorticoid poor-responsive pediatric acute lymphoblastic leukemia, and its reversal by histone deacetylase inhibition. Blood 2010; 116: 3013–3022.

    CAS  PubMed  Google Scholar 

  113. Hazlehurst LA, Argilagos RF, Dalton WS . Beta1 integrin mediated adhesion increases Bim protein degradation and contributes to drug resistance in leukaemia cells. Br J Haematol 2007; 136: 269–275.

    CAS  PubMed  Google Scholar 

  114. Meads MB, Hazlehurst LA, Dalton WS . The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin Cancer Res 2008; 14: 2519–2526.

    CAS  PubMed  Google Scholar 

  115. Nair RR, Tolentino J, Hazlehurst LA . The bone marrow microenvironment as a sanctuary for minimal residual disease in CML. Biochem Pharmacol 2010; 80: 602–612.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Podar K, Chauhan D, Anderson KC . Bone marrow microenvironment and the identification of new targets for myeloma therapy. Leukemia 2009; 23: 10–24.

    CAS  PubMed  Google Scholar 

  117. Kuribara R, Honda H, Matsui H, Shinjyo T, Inukai T, Sugita K et al. Roles of Bim in apoptosis of normal and Bcr-Abl-expressing hematopoietic progenitors. Mol Cell Biol 2004; 24: 6172–6183.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Shinjyo T, Kuribara R, Inukai T, Hosoi H, Kinoshita T, Miyajima A et al. Downregulation of Bim, a proapoptotic relative of Bcl-2, is a pivotal step in cytokine-initiated survival signaling in murine hematopoietic progenitors. Mol Cell Biol 2001; 21: 854–864.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Kuroda J, Puthalakath H, Cragg MS, Kelly PN, Bouillet P, Huang DC et al. Bim and Bad mediate imatinib-induced killing of Bcr/Abl+ leukemic cells, and resistance due to their loss is overcome by a BH3 mimetic. Proc Natl Acad Sci USA 2006; 103: 14907–14912.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Essafi A, Fernández de Mattos S, Hassen YA, Soeiro I, Mufti GJ, Thomas NS et al. Direct transcriptional regulation of Bim by FoxO3a mediates STI571-induced apoptosis in Bcr-Abl-expressing cells. Oncogene 2005; 24: 2317–2329.

    CAS  PubMed  Google Scholar 

  121. Tazzari PL, Cappellini A, Ricci F, Evangelisti C, Papa V, Grafone T et al. Multidrug resistance-associated protein 1 expression is under the control of the phosphoinositide 3 kinase/akt signal transduction network in human acute myelogenous leukemia blasts. Leukemia 2007; 21: 427–438.

    CAS  PubMed  Google Scholar 

  122. Chiarini F, Del Sole M, Mongiorgi S, Gaboardi GC, Cappellini A, Mantovani I et al. The novel Akt inhibitor perifosine induces caspase-dependent apoptosis and downregulates P-glycoprotein expression in multidrug-resistant T-acute leukemia cells by a JNK-dependent mechanism. Leukemia 2008; 22: 1106–1116.

    CAS  PubMed  Google Scholar 

  123. Fala F, Blalock WL, Tazzari P, Chappellini A, Chiarini F, Martinelli G et al. Proapoptotic activity and chemosensitizing effect of the novel Akt inhibitor A43654 in T acute lymphoblastic leukemia. Mol Pharmacol 2008; 74: 884–895.

    CAS  PubMed  Google Scholar 

  124. Tazzari PL, Tabellini G, Ricci F, Papa V, Bortul R, Chiarini F et al. Synergistic proapoptotic activity of recombinant trail plus the akt inhibitor perifosine in acute myelogenous leukemia cells. Cancer Res 2008; 68: 9394–9403.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Lee JT, Steelman LS, Chappell WH, McCubrey JA . Akt Inactivates ERK causing decreased response to chemotherapeutic drugs in advanced CaP cells. Cell Cycle 2008; 7: 631–636.

    CAS  PubMed  Google Scholar 

  126. Cheong JW, Eom JI, Maeng HY, Lee ST, Hahn JS, Ko YW et al. Constitutive phosphorylation of FKHR transcription factor as a prognostic variable in acute myeloid leukemia. Leuk Res 2003; 27: 1159–1162.

    CAS  PubMed  Google Scholar 

  127. Kornblau SM, Singh N, Qiu Y, Chen W, Zhang N, Coombes KR . Highly phosphorylated FOXO3A is an adverse prognostic factor in acute myeloid leukemia. Clin Cancer Res 2010; 16: 1865–1874.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Scheijen B, Ngo HT, Kang H, Griffin JD . FLT3 receptors with internal tandem duplications promote cell viability and proliferation by signaling through Foxo proteins. Oncogene 2004; 23: 3338–3349.

    CAS  PubMed  Google Scholar 

  129. Weisberg E, Sattler M, Ray A, Griffin JD . Drug resistance in mutant FLT3-positive AML. Oncogene 2010; 29: 5120–5134.

    CAS  PubMed  Google Scholar 

  130. Chapuis N, Park S, Leotoing L, Tamburini J, Verdier F, Bardet V et al. IκB kinase overcomes PI3K/Akt and ERK/MAPK to control FOXO3a activity in acute myeloid leukemia. Blood 2010; 116: 4240–4250.

    CAS  PubMed  Google Scholar 

  131. Hui RC, Gomes AR, Constantinidou D, Costa JR, Karadedou CT, Fernandez de Mattos S et al. The forkhead transcription factor FOXO3a increases phosphoinositide-3 kinase/Akt activity in drug-resistant leukemic cells through induction of PIK3CA expression. Mol Cell Biol 2008; 28: 5886–5898.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Hui RC, Francis RE, Guest SK, Costa JR, Gomes AR, Myatt SS et al. Doxorubicin activates FOXO3a to induce the expression of multidrug resistance gene ABCB1 (MDR1) in K562 leukemic cells. Mol Cancer Ther 2008; 7: 670–678.

    CAS  PubMed  Google Scholar 

  133. Kim J, Freeman MR . JNK/SAPK mediates doxorubicin-induced differentiation and apoptosis in MCF-7 breast cancer cells. Breast Cancer Res Treat 2003; 79: 321–328.

    CAS  PubMed  Google Scholar 

  134. Chu F, Chou PM, Zheng X, Mirkin BL, Rebbaa A . Control of multidrug resistance gene mdr1 and cancer resistance to chemotherapy by the longevity gene sirt1. Cancer Res 2005; 65: 10183–10187.

    CAS  PubMed  Google Scholar 

  135. Yang Y, Hou H, Haller EM, Nicosia SV, Bai W . Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation. EMBO J 2005; 24: 1021–1032.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004; 303: 2011–2015.

    CAS  PubMed  Google Scholar 

  137. Akiyama T, Dass CR, Choong PFM . Bim-targeted cancer therapy: a link between drug action and underlying molecular changes. Mol Cancer Ther 2009; 8: 3173–3180.

    CAS  PubMed  Google Scholar 

  138. Sunters A, Ferandez de Mattos S, Stahl M, Brosens JJ, Zoumpoulidou G, Saunders CA et al. FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J Biol Chem 2003; 278: 49795–49805.

    CAS  PubMed  Google Scholar 

  139. Garcia-Echeverria C . Allosteric and ATP-competitive kinase inhibitors of mTOR for cancer therapy. Bioorg Med Chem Lett 2010; 20: 4308–4312.

    CAS  PubMed  Google Scholar 

  140. Tamburini J, Green AS, Bardet V, Chapuis N, Park S, Willems L et al. Protein synthesis is resistant to rapamycin and constitutes a promising therapeutic target in acute myeloid leukemia. Blood 2009; 114: 1618–1627.

    CAS  PubMed  Google Scholar 

  141. Tamburini J, Chapuis N, Bardet V, Park S, Sujobert P, Willems L et al. Mammalian target of rapamycin (mTOR) inhibition activates phosphatidylinositol 3-kinase/Akt by up-regulating insulin-like growth factor-1 receptor signaling in acute myeloid leukemia: rationale for therapeutic inhibition of both pathways. Blood 2008; 111: 379–382.

    CAS  PubMed  Google Scholar 

  142. Chapuis N, Tamburini J, Cornillet-Lefebvre P, Gillot L, Bardet V, Willems L et al. Autocrine IGF-1/IGF-1R signaling is responsible for constitutive PI3K/Akt activation in acute myeloid leukemia: therapeutic value of neutralizing anti-IGF-1R antibody. Haematologica 2010; 95: 415–423.

    CAS  PubMed  Google Scholar 

  143. Park S, Chapuis N, Tamburini J, Bardet V, Cornillet-Lefebvre P, Willems L et al. Role of the PI3K/AKT and mTOR signaling pathways in acute myeloid leukemia. Haematologica 2010; 95: 819–828.

    CAS  PubMed  Google Scholar 

  144. Tamburini J, Green AS, Chapuis N, Bardet V, Lacombe C, Mayeux P et al. Targeting translation in acute myeloid leukemia: a new paradigm for therapy? Cell Cycle 2009; 8: 3893–3899.

    CAS  PubMed  Google Scholar 

  145. Chapuis N, Tamburini J, Green AS, Willems L, Bardet V, Park S et al. Perspectives on inhibiting mTOR as a future treatment strategy for hematological malignancies. Leukemia 2010; 24: 1686–1699.

    CAS  PubMed  Google Scholar 

  146. Park S, Chapuis N, Bardet V, Tamburini J, Gallay N, Willems L et al. PI-103, a dual inhibitor of class IA phosphatidylinositide 3-kinase and mTOR, has antileukemic activity in AML. Leukemia 2008; 22: 1698–1706.

    CAS  PubMed  Google Scholar 

  147. Chapuis N, Tamburini J, Green AS, Vignon C, Bardet V, Neyret A et al. Dual inhibition of PI3K and mTORC1/2 signalling by NVP-BEZ235 as a new therapeutic strategy for acute myeloid leukemia. Clin Cancer Res 2010; 16: 5424–5435.

    CAS  PubMed  Google Scholar 

  148. Moerke NJ, Aktas H, Chen H, Cantel S, Reibarkh MY, Fahmy A et al. Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell 2007; 128: 257–267.

    CAS  PubMed  Google Scholar 

  149. Green AS, Chapuis N, Maciel TT, Willems L, Lambert M, Arnoult C et al. The LKB1/AMPK signaling pathway has tumor suppressor activity in acute myeloid leukemia through the repression of mTOR-dependent oncogenic mRNA translation. Blood 2010; 116: 4262–4273.

    CAS  PubMed  Google Scholar 

  150. Kentsis A, Topisirovic I, Culjkovic B, Shao L, Borden KL . Ribavirin suppresses eIF4E-mediated oncogenic transformation by physical mimicry of the 7-methyl guanosine mRNA cap. Proc Natl Acad Sci USA 2004; 101: 18105–18110.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Kentsis A, Volpon L, Topisirovic I, Soll CE, Culjkovic B, Shao L et al. Further evidence that ribavirin interacts with eIF4E. RNA 2005; 11: 1762–1766.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Assouline S, Culjkovic B, Cocolakis E, Rousseau C, Beslu N, Amri A et al. Molecular targeting of the oncogene eIF4E in acute myeloid leukemia (AML): a proof-of-principle clinical trial with ribavirin. Blood 2009; 114: 257–260.

    CAS  PubMed  Google Scholar 

  153. Wendel HG, Malina A, Zhao Z, Zender L, Kogan SC, Cordon-Cardo C et al. Determinants of sensitivity and resistance to rapamycin-chemotherapy drug combinations in vivo. Cancer Res 2006; 66: 7639–7646.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Dilling MB, Dias P, Shapiro DN, Germain GS, Johnson RK, Houghton PJ . Rapamycin selectively inhibits the growth of childhood rhabdomyosarcoma cells through inhibition of signaling via the type I insulin-like growth factor receptor. Cancer Res 1994; 54: 903–907.

    CAS  PubMed  Google Scholar 

  155. Dilling MB, Germain GS, Dudkin L, Jayaraman AL, Zhang X, Harwood FC et al. 4E-binding proteins, the suppressors of eukaryotic initiation factor 4E, are down-regulated in cells with acquired or intrinsic resistance to rapamycin. J Biol Chem 2002; 277: 13907–13917.

    CAS  PubMed  Google Scholar 

  156. Kurmasheva RT, Huang S, Houghton PJ . Predicted mechanisms of resistance to mTOR inhibitors. Br J Cancer 2006; 95: 955–960.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Beuvink I, Boulay A, Fumagalli S, Zilbermann F, Ruetz S, O’Reilly T et al. The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell 2005; 120: 747–759.

    CAS  PubMed  Google Scholar 

  158. Noh WC, Mondesire WH, Peng J, Jian W, Zhang H, Dong J et al. Determinants of rapamycin sensitivity in breast cancer cells. Clin Cancer Res 2004; 10: 1013–1023.

    CAS  PubMed  Google Scholar 

  159. Graff JR, Konicek BW, Carter JH, Marcusson EG . Targeting the eukaryotic translation initiation factor 4E for cancer therapy. Cancer Res 2008; 68: 631–634.

    CAS  PubMed  Google Scholar 

  160. Sonenberg N, Hinnebusch AG . New modes of translational control in development, behavior and disease. Mol Cell 2007; 28: 721–729.

    CAS  PubMed  Google Scholar 

  161. Mavrakis KJ, Wendel HG . Translational control and cancer therapy. Cell Cycle 2008; 7: 2791–2794.

    CAS  PubMed  Google Scholar 

  162. Bordeleau ME, Robert F, Gerard B, Lindqvist L, Chen SM, Wendel HG et al. Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model. J Clin Invest 2008; 118: 2651–2660.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Robert F, Carrier M, Rawe S, Chen S, Lowe S, Pelletier J . Altering chemosensitivity by modulating translation elongation. PLoS One 2009; 4: e5428.

    PubMed  PubMed Central  Google Scholar 

  164. Mills JR, Hippo Y, Robert F, Chen SM, Malina A, Lin CJ et al. mTORC1 promotes survival through translational control of Mcl-1. Proc Natl Acad Sci USA 2008; 105: 10853–10858.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Lassman AB, Rossi MR, Raizer JJ, Abrey LE, Lieberman FS, Grefe CN et al. Molecular study of malignant gliomas treated with epidermal growth factor receptor inhibitors: tissue analysis from North American Brain Tumor Consortium Trials 01–03 and 00–01. Clin Cancer Res 2005; 11: 7841–7850.

    CAS  PubMed  Google Scholar 

  166. Leseux L, Hamdi SM, Al Saati T, Capilla F, Recher C, Laurent G et al. Syk-dependent mTOR activation in follicular lymphoma cells. Blood 2006; 108: 4156–4162.

    CAS  PubMed  Google Scholar 

  167. Peponi E, Drakos E, Reyes G, Leventaki V, Rassidakis GZ, Medeiros LJ . Activation of mammalian target of rapamycin signaling promotes cell cycle progression and protects cells from apoptosis in mantle cell lymphoma. Am J Pathol 2006; 169: 2171–2180.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Lu ZH, Shvartsman MB, Lee AY, Shao JM, Murray MM, Kladney RD et al. Mammalian target of rapamycin activator RHEB is frequently overexpressed in human carcinomas and is critical and sufficient for skin epithelial carcinogenesis. Cancer Res 2010; 70: 3287–3298.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M, Lowe SW . Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 1998; 12: 3008–3019.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Mavrakis KJ, Zhu H, Silva RL, Mills JR, Teruya-Feldstein J, Lowe SW et al. Tumorigenic activity and therapeutic inhibition of Rheb GTPase. Genes Dev 2008; 22: 2178–2188.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Fulda S, Debatin KM . HIF-1-regulated glucose metabolism: a key to apoptosis resistance? Cell Cycle 2007; 6: 790–792.

    CAS  PubMed  Google Scholar 

  172. Schnitzer SE, Schmid T, Zhou J, Brune B . Hypoxia and HIF-1a protect A549 cells from drug induced apoptosis. Cell Death Differ 2006; 13: 1611–1613.

    CAS  PubMed  Google Scholar 

  173. Sun X, Vale M, Jiang X, Gupta R, Krissansen GW . Antisense HIF-1α prevents acquired tumor resistance to angiostatin gene therapy. Cancer Gene Ther 2010; 17: 532–540.

    CAS  PubMed  Google Scholar 

  174. Hao J, Song X, Song B, Liu Y, Wei L, Wang X et al. Effects of lentivirus-mediated HIF-1α knockdown on hypoxia-related cisplatin resistance and their dependence on p53 status in fibrosarcoma cells—effects of lentivirus-mediated HIF-1α knockdown. Cancer Gene Ther 2008; 15: 449–455.

    CAS  PubMed  Google Scholar 

  175. Yilmaz NH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H et al. PTEN-dependence distinguishes haematopoietic stem cells from leukemia-initiating cells. Nature 2006; 441: 475–478.

    CAS  PubMed  Google Scholar 

  176. Misaghian N, Ligresti G, Steelman LS, Bertrand FE, Bäsecke J, Libra M et al. Targeting the leukemic stem cell—the holy grail of leukemia therapy. Leukemia 2009; 23: 25–42.

    CAS  PubMed  Google Scholar 

  177. Guo W, Schubbert S, Chen JY, Valamehr B, Mosessian S, Shi H et al. Suppression of leukemia development caused by PTEN loss. Proc Natl Acad Sci USA 2011; 108: 1409–1414.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Chiarini F, Grimaldi C, Ricci F, Tazzari PL, Evangelisti C, Ognibene A et al. Activity of the novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 against T-cell acute lymphoblastic leukemia. Cancer Res 2010; 70: 8097–8107.

    CAS  PubMed  Google Scholar 

  179. Evangelisti C, Ricci F, Tazzari P, Chiarini F, Battistelli M, Falcieri E et al. Preclinical testing of the Akt inhibitor triciribine in T-cell acute lymphoblastic leukemia. J Cell Physiol 2011; 226: 822–831.

    CAS  PubMed  Google Scholar 

  180. Moshaver B, van Rhenen A, Kelder A, van der Pol M, Terwijn M, Bachas C et al. Identification of a small subpopulation of candidate leukemia-initiating cells in the side population of patients with acute myeloid leukemia. Stem Cells 2008; 26: 3059–3067.

    PubMed  Google Scholar 

  181. Yamazaki J, Mizukami T, Takizawa K, Kuramitsu M, Momose H, Masumi A et al. Identification of cancer stem cells in a Tax-transgenic (Tax-Tg) mouse model of adult T-cell leukemia/lymphoma. Blood 2009; 114: 2709–2720.

    CAS  PubMed  Google Scholar 

  182. Cox CV, Martin HM, Kearns PR, Virgo P, Evely RS, Blair A . Characterization of a progenitor cell population in childhood T-cell acute lymphoblastic leukemia. Blood 2007; 109: 674–682.

    CAS  PubMed  Google Scholar 

  183. Evangelisti C, Ricci F, Tazzari PL, Tabellini G, Battistelli M, Falcieri E et al. Targeted inhibition of mTORC1 and mTORC2 by active-site mTOR inhibitors has cytotoxic effects in T-cell acute lymphoblastic leukemia. Leukemia 2011; e-pub ahead of print 18 February 2011; doi:10.1038/leu.2011.20.

    CAS  PubMed  Google Scholar 

  184. Ito K, Bernardi R, Pandolfi PP . A novel signaling network as a critical rheostat for the biology and maintenance of the normal stem cell and the cancer-initiating cell. Curr Opin Genet Dev 2009; 19: 51–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Lee JY, Nakada D, Yilmaz OH, Tothova Z, Joseph NM, Lim MS et al. mTOR activation induces tumor suppressors that inhibit leukemogenesis and deplete hematopoietic stem cells after Pten deletion. Cell Stem Cell 2010; 7: 593–605.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Chen C, Liu Y, Liu R, Ikenoue T, Guan KL, Liu Y et al. TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 2008; 205: 2397–2408.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Gan B, Sahin E, Jiang S, Sanchez-Aguilera A, Scott KL, Chin L et al. mTORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization. Proc Natl Acad Sci USA 2008; 105: 19384–19389.

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Hashimoto Y, Skacel M, Adams JC . Roles of facin in human carcinoma motility and signaling: prospects for a novel biomarker? Int J Biochem Cell Biol 2005; 37: 1787–1804.

    CAS  PubMed  Google Scholar 

  189. Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 2007; 128: 325–339.

    CAS  PubMed  Google Scholar 

  190. Miyamoto K, Araki KY, Naka K, Arai F, Takubo K, Yamazaki S et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 2007; 1: 101–112.

    CAS  PubMed  Google Scholar 

  191. Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature 2008; 453: 1072–1079.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Ito K, Bernardi R, Pandolfi PP . A novel signaling network as a critical rheostat for the biology and maintenance of the normal stem cell and the cancer-initiating cell. Genes Dev 2009; 19: 51–59.

    CAS  Google Scholar 

  193. Bernardi R, Guernah I, Jin D, Grisendi S, Alimonti A, Teruya-Feldstein J et al. PML inhibits HIF-1α translation and neoangiogenesis through repression of mTOR. Nature 2006; 442: 779–785.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from Fondazione del Monte di Bologna e Ravenna, MinSan 2008 ‘Molecular therapy in pediatric sarcomas and leukemias against insulin-like growth factor-1 receptor system’, PRIN 2008 and FIRB 2010 (RBAP10447J) to AMM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J A McCubrey.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martelli, A., Evangelisti, C., Chappell, W. et al. Targeting the translational apparatus to improve leukemia therapy: roles of the PI3K/PTEN/Akt/mTOR pathway. Leukemia 25, 1064–1079 (2011). https://doi.org/10.1038/leu.2011.46

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.46

Keywords

This article is cited by

Search

Quick links