Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Perspectives on inhibiting mTOR as a future treatment strategy for hematological malignancies

Abstract

Mammalian target of rapamycin (mTOR) is a protein kinase implicated in the regulation of various cellular processes, including those required for tumor development, such as the initiation of mRNA translation, cell-cycle progression and cellular proliferation. In a wide range of hematological malignancies, the mTORC1 signaling pathway has been found to be deregulated and has been designed as a major target for tumor therapy. Given that pre-clinical studies have clearly established the therapeutic value of mTORC1 inhibition, numerous clinical trials of rapamycin and its derivates (rapalogs) are ongoing for treatment of these diseases. At this time, although disease stabilization and tumor regression have been observed, objective responses in some tumor types have been modest. Nevertheless, some of the mechanisms underlying cancer-cell resistance to rapamycin have now been described, thereby leading to the development of new strategy to efficiently target mTOR signaling in these diseases. In this review, we discuss the rationale for using mTOR inhibitors as novel therapies for a variety of hematological, malignancies with a focus on promising new perspectives for these approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Pritchard DI . Sourcing a chemical succession for cyclosporin from parasites and human pathogens. Drug discov today 2005; 10: 688–691.

    PubMed  Google Scholar 

  2. Jacinto E, Hall MN . Tor signalling in bugs, brain and brawn. Nat Rev Mol Cell Biol 2003; 4: 117–126.

    CAS  PubMed  Google Scholar 

  3. Wang L, Harris TE, Roth RA, Lawrence Jr JC . PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J Biol Chem 2007; 282: 20036–20044.

    CAS  PubMed  Google Scholar 

  4. Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009; 137: 873–886.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bai X, Ma D, Liu A, Shen X, Wang QJ, Liu Y et al. Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. Science 2007; 318: 977–980.

    CAS  PubMed  Google Scholar 

  6. Choi J, Chen J, Schreiber SL, Clardy J . Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 1996; 273: 239–242.

    CAS  PubMed  Google Scholar 

  7. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002; 110: 163–175.

    CAS  PubMed  Google Scholar 

  8. Oshiro N, Yoshino K, Hidayat S, Tokunaga C, Hara K, Eguchi S et al. Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells 2004; 9: 359–366.

    CAS  PubMed  Google Scholar 

  9. Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002; 110: 177–189.

    CAS  PubMed  Google Scholar 

  10. Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Developmental cell 2006; 11: 859–871.

    CAS  PubMed  Google Scholar 

  11. Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH . Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 2007; 9: 316–323.

    CAS  PubMed  Google Scholar 

  12. Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 2004; 6: 1122–1128.

    CAS  PubMed  Google Scholar 

  13. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004; 14: 1296–1302.

    CAS  PubMed  Google Scholar 

  14. Sarbassov dos D, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006; 22: 159–168.

    CAS  PubMed  Google Scholar 

  15. Zeng Z, Sarbassov dos D, Samudio IJ, Yee KW, Munsell MF, Ellen Jackson C et al. Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood 2007; 109: 3509–3512.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sarbassov DD, Ali SM, Sabatini DM . Growing roles for the mTOR pathway. Curr opin cell biol 2005; 17: 596–603.

    CAS  PubMed  Google Scholar 

  17. Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J . Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci USA 2004; 101: 13489–13494.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J . Rheb binds and regulates the mTOR kinase. Curr Biol 2005; 15: 702–713.

    CAS  PubMed  Google Scholar 

  19. Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP . Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 2005; 121: 179–193.

    CAS  PubMed  Google Scholar 

  20. Inoki K, Li Y, Xu T, Guan KL . Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 2003; 17: 1829–1834.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL . Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 2008; 10: 935–945.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008; 320: 1496–1501.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 2009; 136: 521–534.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 2006; 126: 955–968.

    CAS  PubMed  Google Scholar 

  25. Feng Z, Zhang H, Levine AJ, Jin S . The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA 2005; 102: 8204–8209.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Stambolic V, MacPherson D, Sas D, Lin Y, Snow B, Jang Y et al. Regulation of PTEN transcription by p53. Mol Cell 2001; 8: 317–325.

    CAS  PubMed  Google Scholar 

  27. Lawlor MA, Alessi DR . PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J cell sci 2001; 114: 2903–2910.

    CAS  PubMed  Google Scholar 

  28. Huang J, Dibble CC, Matsuzaki M, Manning BD . The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol Cell Biol 2008; 28: 4104–4115.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ruvinsky I, Meyuhas O . Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends biochem sci 2006; 31: 342–348.

    CAS  PubMed  Google Scholar 

  30. De Benedetti A, Graff JR . eIF-4E expression and its role in malignancies and metastases. Oncogene 2004; 23: 3189–3199.

    CAS  PubMed  Google Scholar 

  31. Codogno P, Meijer AJ . Autophagy and signaling: their role in cell survival and cell death. Cell death differ 2005; 12: 1509–1518.

    CAS  PubMed  Google Scholar 

  32. Kim JE, Chen J . regulation of peroxisome proliferator-activated receptor-gamma activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes 2004; 53: 2748–2756.

    CAS  PubMed  Google Scholar 

  33. Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leevers S et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell metabolism 2008; 8: 224–236.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Laplante M, Sabatini DM . An emerging role of mTOR in lipid biosynthesis. Curr Biol 2009; 19: R1046–R1052.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM . Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005; 307: 1098–1101.

    CAS  PubMed  Google Scholar 

  36. Garcia-Martinez JM, Alessi DR . mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). The Biochemical journal 2008; 416: 375–385.

    CAS  PubMed  Google Scholar 

  37. Inoki K, Corradetti MN, Guan KL . Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet 2005; 37: 19–24.

    CAS  PubMed  Google Scholar 

  38. Manning BD . Balancing Akt with S6K: implications for both metabolic diseases and tumorigenesis. J cell biol 2004; 167: 399–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H et al. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J cell biol 2004; 166: 213–223.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Collins BJ, Deak M, Arthur JS, Armit LJ, Alessi DR . In vivo role of the PIF-binding docking site of PDK1 defined by knock-in mutation. Embo J 2003; 22: 4202–4211.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pene F, Claessens YE, Muller O, Viguie F, Mayeux P, Dreyfus F et al. Role of the phosphatidylinositol 3-kinase/Akt and mTOR/P70S6-kinase pathways in the proliferation and apoptosis in multiple myeloma. Oncogene 2002; 21: 6587–6597.

    CAS  PubMed  Google Scholar 

  42. Shi Y, Gera J, Hu L, Hsu JH, Bookstein R, Li W et al. Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779. Cancer Res 2002; 62: 5027–5034.

    CAS  PubMed  Google Scholar 

  43. Ly C, Arechiga AF, Melo JV, Walsh CM, Ong ST . Bcr-Abl kinase modulates the translation regulators ribosomal protein S6 and 4E-BP1 in chronic myelogenous leukemia cells via the mammalian target of rapamycin. Cancer Res 2003; 63: 5716–5722.

    CAS  PubMed  Google Scholar 

  44. Kim JH, Chu SC, Gramlich JL, Pride YB, Babendreier E, Chauhan D et al. Activation of the PI3K/mTOR pathway by BCR-ABL contributes to increased production of reactive oxygen species. Blood 2005; 105: 1717–1723.

    CAS  PubMed  Google Scholar 

  45. Parmar S, Smith J, Sassano A, Uddin S, Katsoulidis E, Majchrzak B et al. Differential regulation of the p70 S6 kinase pathway by interferon alpha (IFNalpha) and imatinib mesylate (STI571) in chronic myelogenous leukemia cells. Blood 2005; 106: 2436–2443.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sujobert P, Bardet V, Cornillet-Lefebvre P, Hayflick JS, Prie N, Verdier F et al. Essential role for the p110delta isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia. Blood 2005; 106: 1063–1066.

    CAS  PubMed  Google Scholar 

  47. Billottet C, Grandage VL, Gale RE, Quattropani A, Rommel C, Vanhaesebroeck B et al. A selective inhibitor of the p110delta isoform of PI 3-kinase inhibits AML cell proliferation and survival and increases the cytotoxic effects of VP16. Oncogene 2006; 25: 6648–6659.

    CAS  PubMed  Google Scholar 

  48. Tamburini J, Green AS, Bardet V, Chapuis N, Park S, Willems L et al. Protein synthesis is resistant to rapamycin and constitutes a promising therapeutic target in acute myeloid leukemia. Blood 2009; 114: 1618–1627.

    CAS  PubMed  Google Scholar 

  49. Dos Santos C, Demur C, Bardet V, Prade-Houdellier N, Payrastre B, Recher C . A critical role for Lyn in acute myeloid leukemia. Blood 2008; 111: 2269–2279.

    CAS  PubMed  Google Scholar 

  50. Kharas MG, Janes MR, Scarfone VM, Lilly MB, Knight ZA, Shokat KM et al. Ablation of PI3K blocks BCR-ABL leukemogenesis in mice, and a dual PI3K/mTOR inhibitor prevents expansion of human BCR-ABL+ leukemia cells. J Clin Invest 2008; 118: 3038–3050.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Leseux L, Hamdi SM, Al Saati T, Capilla F, Recher C, Laurent G et al. Syk-dependent mTOR activation in follicular lymphoma cells. Blood 2006; 108: 4156–4162.

    CAS  PubMed  Google Scholar 

  52. Rudelius M, Pittaluga S, Nishizuka S, Pham TH, Fend F, Jaffe ES et al. Constitutive activation of Akt contributes to the pathogenesis and survival of mantle cell lymphoma. Blood 2006; 108: 1668–1676.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Peponi E, Drakos E, Reyes G, Leventaki V, Rassidakis GZ, Medeiros LJ . Activation of mammalian target of rapamycin signaling promotes cell cycle progression and protects cells from apoptosis in mantle cell lymphoma. Am J Pathol 2006; 169: 2171–2180.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Frost P, Moatamed F, Hoang B, Shi Y, Gera J, Yan H et al. In vivo antitumor effects of the mTOR inhibitor CCI-779 against human multiple myeloma cells in a xenograft model. Blood 2004; 104: 4181–4187.

    CAS  PubMed  Google Scholar 

  55. Frost P, Shi Y, Hoang B, Lichtenstein A . AKT activity regulates the ability of mTOR inhibitors to prevent angiogenesis and VEGF expression in multiple myeloma cells. Oncogene 2007; 26: 2255–2262.

    CAS  PubMed  Google Scholar 

  56. Tamburini J, Chapuis N, Bardet V, Park S, Sujobert P, Willems L et al. Mammalian target of rapamycin (mTOR) inhibition activates phosphatidylinositol 3-kinase/Akt by up-regulating insulin-like growth factor-1 receptor signaling in acute myeloid leukemia: rationale for therapeutic inhibition of both pathways. Blood 2008; 111: 379–382.

    CAS  PubMed  Google Scholar 

  57. Guertin DA, Stevens DM, Saitoh M, Kinkel S, Crosby K, Sheen JH et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell 2009; 15: 148–159.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Gupta M, Ansell SM, Novak AJ, Kumar S, Kaufmann SH, Witzig TE . Inhibition of histone deacetylase overcomes rapamycin-mediated resistance in diffuse large B-cell lymphoma by inhibiting Akt signaling through mTORC2. Blood 2009; 114: 2926–2935.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Yuan R, Kay A, Berg WJ, Lebwohl D . Targeting tumorigenesis: development and use of mTOR inhibitors in cancer therapy. J Hematol Oncol 2009; 2: 45.

    PubMed  PubMed Central  Google Scholar 

  60. Fasolo A, Sessa C . mTOR inhibitors in the treatment of cancer. Expert opinion on investigational drugs 2008; 17: 1717–1734.

    CAS  PubMed  Google Scholar 

  61. Xu Q, Simpson SE, Scialla TJ, Bagg A, Carroll M . Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 2003; 102: 972–980.

    CAS  PubMed  Google Scholar 

  62. Xu Q, Thompson JE, Carroll M . mTOR regulates cell survival after etoposide treatment in primary AML cells. Blood 2005; 106: 4261–4268.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Recher C, Beyne-Rauzy O, Demur C, Chicanne G, Dos Santos C, Mas VM et al. Antileukemic activity of rapamycin in acute myeloid leukemia. Blood 2005; 105: 2527–2534.

    CAS  PubMed  Google Scholar 

  64. Yee KW, Zeng Z, Konopleva M, Verstovsek S, Ravandi F, Ferrajoli A et al. Phase I/II study of the mammalian target of rapamycin inhibitor everolimus (RAD001) in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res 2006; 12: 5165–5173.

    CAS  PubMed  Google Scholar 

  65. Perl AE, Kasner MT, Tsai DE, Vogl DT, Loren AW, Schuster SJ et al. A phase I study of the mammalian target of rapamycin inhibitor sirolimus and MEC chemotherapy in relapsed and refractory acute myelogenous leukemia. Clin Cancer Res 2009; 15: 6732–6739.

    CAS  PubMed  Google Scholar 

  66. Nishioka C, Ikezoe T, Yang J, Koeffler HP, Yokoyama A . Blockade of mTOR signaling potentiates the ability of histone deacetylase inhibitor to induce growth arrest and differentiation of acute myelogenous leukemia cells. Leukemia 2008; 22: 2159–2168.

    CAS  PubMed  Google Scholar 

  67. Avellino R, Romano S, Parasole R, Bisogni R, Lamberti A, Poggi V et al. Rapamycin stimulates apoptosis of childhood acute lymphoblastic leukemia cells. Blood 2005; 106: 1400–1406.

    CAS  PubMed  Google Scholar 

  68. Teachey DT, Obzut DA, Cooperman J, Fang J, Carroll M, Choi JK et al. The mTOR inhibitor CCI-779 induces apoptosis and inhibits growth in preclinical models of primary adult human ALL. Blood 2006; 107: 1149–1155.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Teachey DT, Sheen C, Hall J, Ryan T, Brown VI, Fish J et al. mTOR inhibitors are synergistic with methotrexate: an effective combination to treat acute lymphoblastic leukemia. Blood 2008; 112: 2020–2023.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Crazzolara R, Cisterne A, Thien M, Hewson J, Baraz R, Bradstock KF et al. Potentiating effects of RAD001 (Everolimus) on vincristine therapy in childhood acute lymphoblastic leukemia. Blood 2009; 113: 3297–3306.

    CAS  PubMed  Google Scholar 

  71. Chan SM, Weng AP, Tibshirani R, Aster JC, Utz PJ . Notch signals positively regulate activity of the mTOR pathway in T-cell acute lymphoblastic leukemia. Blood 2007; 110: 278–286.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Cardoso BA, Martins LR, Santos CI, Nadler LM, Boussiotis VA, Cardoso AA et al. Interleukin-4 stimulates proliferation and growth of T-cell acute lymphoblastic leukemia cells by activating mTOR signaling. Leukemia 2009; 23: 206–208.

    CAS  PubMed  Google Scholar 

  73. Crazzolara R, Bradstock KF, Bendall LJ . RAD001 (Everolimus) induces autophagy in acute lymphoblastic leukemia. Autophagy 2009; 5: 727–728.

    CAS  PubMed  Google Scholar 

  74. Bonapace L, Bornhauser BC, Schmitz M, Cario G, Ziegler U, Niggli FK et al. Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance. J Clin Invest 2010; 120: 1310–1323.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Mohi MG, Boulton C, Gu TL, Sternberg DW, Neuberg D, Griffin JD et al. Combination of rapamycin and protein tyrosine kinase (PTK) inhibitors for the treatment of leukemias caused by oncogenic PTKs. Proc Natl Acad Sci 2004; 101: 3130–3135.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Prabhu S, Saadat D, Zhang M, Halbur L, Fruehauf JP, Ong ST . A novel mechanism for Bcr-Abl action: Bcr-Abl-mediated induction of the eIF4F translation initiation complex and mRNA translation. Oncogene 2007; 26: 1188–1200.

    CAS  PubMed  Google Scholar 

  77. Sillaber C, Mayerhofer M, Bohm A, Vales A, Gruze A, Aichberger KJ et al. Evaluation of antileukaemic effects of rapamycin in patients with imatinib-resistant chronic myeloid leukaemia. European journal of clinical investigation 2008; 38: 43–52.

    CAS  PubMed  Google Scholar 

  78. Mayerhofer M, Valent P, Sperr WR, Griffin JD, Sillaber C . BCR/ABL induces expression of vascular endothelial growth factor and its transcriptional activator, hypoxia inducible factor-1alpha, through a pathway involving phosphoinositide 3-kinase and the mammalian target of rapamycin. Blood 2002; 100: 3767–3775.

    CAS  PubMed  Google Scholar 

  79. Baumann P, Hagemeier H, Mandl-Weber S, Franke D, Schmidmaier R . Myeloma cell growth inhibition is augmented by synchronous inhibition of the insulin-like growth factor-1 receptor by NVP-AEW541 and inhibition of mammalian target of rapamycin by Rad001. Anti-cancer drugs 2009; 20: 259–266.

    CAS  PubMed  Google Scholar 

  80. Frost P, Shi Y, Hoang B, Gera J, Lichtenstein A . Regulation of D-cyclin translation inhibition in myeloma cells treated with mammalian target of rapamycin inhibitors: rationale for combined treatment with extracellular signal-regulated kinase inhibitors and rapamycin. Mol Cancer Ther 2009; 8: 83–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Shi Y, Yan H, Frost P, Gera J, Lichtenstein A . Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther 2005; 4: 1533–1540.

    CAS  PubMed  Google Scholar 

  82. Stromberg T, Dimberg A, Hammarberg A, Carlson K, Osterborg A, Nilsson K et al. Rapamycin sensitizes multiple myeloma cells to apoptosis induced by dexamethasone. Blood 2004; 103: 3138–3147.

    PubMed  Google Scholar 

  83. Yan H, Frost P, Shi Y, Hoang B, Sharma S, Fisher M et al. Mechanism by which mammalian target of rapamycin inhibitors sensitize multiple myeloma cells to dexamethasone-induced apoptosis. Cancer Res 2006; 66: 2305–2313.

    CAS  PubMed  Google Scholar 

  84. Francis LK, Alsayed Y, Leleu X, Jia X, Singha UK, Anderson J et al. Combination mammalian target of rapamycin inhibitor rapamycin and HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin has synergistic activity in multiple myeloma. Clin Cancer Res 2006; 12: 6826–6835.

    CAS  PubMed  Google Scholar 

  85. Raje N, Kumar S, Hideshima T, Ishitsuka K, Chauhan D, Mitsiades C et al. Combination of the mTOR inhibitor rapamycin and CC-5013 has synergistic activity in multiple myeloma. Blood 2004; 104: 4188–4193.

    CAS  PubMed  Google Scholar 

  86. Mirshahi P, Toprak SK, Faussat AM, Dubrulle S, Marie JP, Soria C et al. Malignant hematopoietic cells induce an increased expression of VEGFR-1 and VEGFR-3 on bone marrow endothelial cells via AKT and mTOR signalling pathways. Biochem Biophys Res Commun 2006; 349: 1003–1010.

    CAS  PubMed  Google Scholar 

  87. Farag SS, Zhang S, Jansak BS, Wang X, Kraut E, Chan K et al. Phase II trial of temsirolimus in patients with relapsed or refractory multiple myeloma. Leukemia research 2009; 33: 1475–1480.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Ringshausen I, Peschel C, Decker T . Mammalian target of rapamycin (mTOR) inhibition in chronic lymphocytic B-cell leukemia: a new therapeutic option. Leukemia & lymphoma 2005; 46: 11–19.

    CAS  Google Scholar 

  89. Decker T, Hipp S, Ringshausen I, Bogner C, Oelsner M, Schneller F et al. Rapamycin-induced G1 arrest in cycling B-CLL cells is associated with reduced expression of cyclin D3, cyclin E, cyclin A, and survivin. Blood 2003; 101: 278–285.

    CAS  PubMed  Google Scholar 

  90. Aleskog A, Norberg M, Nygren P, Rickardson L, Kanduri M, Tobin G et al. Rapamycin shows anticancer activity in primary chronic lymphocytic leukemia cells in vitro, as single agent and in drug combination. Leukemia & lymphoma 2008; 49: 2333–2343.

    CAS  Google Scholar 

  91. Hayun R, Okun E, Berrebi A, Shvidel L, Bassous L, Sredni B et al. Rapamycin and curcumin induce apoptosis in primary resting B chronic lymphocytic leukemia cells. Leukemia & lymphoma 2009; 50: 625–632.

    CAS  Google Scholar 

  92. Zanesi N, Aqeilan R, Drusco A, Kaou M, Sevignani C, Costinean S et al. Effect of rapamycin on mouse chronic lymphocytic leukemia and the development of nonhematopoietic malignancies in Emu-TCL1 transgenic mice. Cancer Res 2006; 66: 915–920.

    CAS  PubMed  Google Scholar 

  93. Decker T, Sandherr M, Goetze K, Oelsner M, Ringshausen I, Peschel C . A pilot trial of the mTOR (mammalian target of rapamycin) inhibitor RAD001 in patients with advanced B-CLL. Annals of hematology 2009; 88: 221–227.

    CAS  PubMed  Google Scholar 

  94. Zent CS, LaPlant BR, Johnston PB, Call TG, Habermann TM, Micallef IN et al. The treatment of recurrent/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL) with everolimus results in clinical responses and mobilization of CLL cells into the circulation. Cancer 2010; 116: 2201–2207.

    PubMed  Google Scholar 

  95. Hipp S, Ringshausen I, Oelsner M, Bogner C, Peschel C, Decker T . Inhibition of the mammalian target of rapamycin and the induction of cell cycle arrest in mantle cell lymphoma cells. Haematologica 2005; 90: 1433–1434.

    CAS  PubMed  Google Scholar 

  96. Dal Col J, Zancai P, Terrin L, Guidoboni M, Ponzoni M, Pavan A et al. Distinct functional significance of Akt and mTOR constitutive activation in mantle cell lymphoma. Blood 2008; 111: 5142–5151.

    CAS  PubMed  Google Scholar 

  97. Yazbeck VY, Buglio D, Georgakis GV, Li Y, Iwado E, Romaguera JE et al. Temsirolimus downregulates p21 without altering cyclin D1 expression and induces autophagy and synergizes with vorinostat in mantle cell lymphoma. Exp Hematol 2008; 36: 443–450.

    CAS  PubMed  Google Scholar 

  98. Haritunians T, Mori A, O'Kelly J, Luong QT, Giles FJ, Koeffler HP . Antiproliferative activity of RAD001 (everolimus) as a single agent and combined with other agents in mantle cell lymphoma. Leukemia 2007; 21: 333–339.

    CAS  PubMed  Google Scholar 

  99. Witzig TE, Geyer SM, Ghobrial I, Inwards DJ, Fonseca R, Kurtin P et al. Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J Clin Oncol 2005; 23: 5347–5356.

    CAS  PubMed  Google Scholar 

  100. Ansell SM, Inwards DJ, Rowland Jr KM, Flynn PJ, Morton RF, Moore Jr DF et al. Low-dose, single-agent temsirolimus for relapsed mantle cell lymphoma: a phase 2 trial in the North Central Cancer Treatment Group. Cancer 2008; 113: 508–514.

    CAS  PubMed  Google Scholar 

  101. Rizzieri DA, Feldman E, Dipersio JF, Gabrail N, Stock W, Strair R et al. A phase 2 clinical trial of deforolimus (AP23573, MK-8669), a novel mammalian target of rapamycin inhibitor, in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res 2008; 14: 2756–2762.

    CAS  PubMed  Google Scholar 

  102. Hess G, Herbrecht R, Romaguera J, Verhoef G, Crump M, Gisselbrecht C et al. Phase III study to evaluate temsirolimus compared with investigator's choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J Clin Oncol 2009; 27: 3822–3829.

    CAS  PubMed  Google Scholar 

  103. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo J 2000; 19: 5720–5728.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Younes A . Therapeutic activity of mTOR inhibitors in mantle cell lymphoma: clues but no clear answers. Autophagy 2008; 4: 707–709.

    CAS  PubMed  Google Scholar 

  105. Guertin DA, Sabatini DM . Defining the role of mTOR in cancer. Cancer Cell 2007; 12: 9–22.

    CAS  PubMed  Google Scholar 

  106. Fan QW, Knight ZA, Goldenberg DD, Yu W, Mostov KE, Stokoe D et al. A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell 2006; 9: 341–349.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Park S, Chapuis N, Bardet V, Tamburini J, Gallay N, Willems L et al. PI-103, a dual inhibitor of Class IA phosphatidylinositide 3-kinase and mTOR, has antileukemic activity in AML. Leukemia 2008; 22: 1698–1706.

    CAS  PubMed  Google Scholar 

  108. Kojima K, Shimanuki M, Shikami M, Samudio IJ, Ruvolo V, Corn P et al. The dual PI3 kinase/mTOR inhibitor PI-103 prevents p53 induction by Mdm2 inhibition but enhances p53-mediated mitochondrial apoptosis in p53 wild-type AML. Leukemia 2008; 22: 1728–1736.

    CAS  PubMed  Google Scholar 

  109. Chiarini F, Fala F, Tazzari PL, Ricci F, Astolfi A, Pession A et al. Dual inhibition of class IA phosphatidylinositol 3-kinase and mammalian target of rapamycin as a new therapeutic option for T-cell acute lymphoblastic leukemia. Cancer Res 2009; 69: 3520–3528.

    CAS  PubMed  Google Scholar 

  110. McMillin DW, Ooi M, Delmore J, Negri J, Hayden P, Mitsiades N et al. Antimyeloma activity of the orally bioavailable dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235. Cancer Res 2009; 69: 5835–5842.

    CAS  PubMed  Google Scholar 

  111. Tazzari PL, Tabellini G, Bortul R, Papa V, Evangelisti C, Grafone T et al. The insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 induces apoptosis in acute myeloid leukemia cells exhibiting autocrine insulin-like growth factor-I secretion. Leukemia 2007; 21: 886–896.

    CAS  PubMed  Google Scholar 

  112. Doepfner KT, Spertini O, Arcaro A . Autocrine insulin-like growth factor-I signaling promotes growth and survival of human acute myeloid leukemia cells via the phosphoinositide 3-kinase/Akt pathway. Leukemia 2007; 21: 1921–1930.

    CAS  PubMed  Google Scholar 

  113. Chapuis N, Tamburini J, Cornillet-Lefebvre P, Gillot L, Bardet V, Willems L et al. Autocrine IGF-1/IGF-1R signaling is responsible for constitutive PI3K/Akt activation in acute myeloid leukemia: therapeutic value of neutralizing anti-IGF-1R antibody. Haematologica 2010; 95: 415–423.

    CAS  PubMed  Google Scholar 

  114. Wang X, Yue P, Chan CB, Ye K, Ueda T, Watanabe-Fukunaga R et al. Inhibition of mammalian target of rapamycin induces phosphatidylinositol 3-kinase-dependent and Mnk-mediated eukaryotic translation initiation factor 4E phosphorylation. Mol Cell Biol 2007; 27: 7405–7413.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 2008; 118: 3065–3074.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS biology 2009; 7: e38.

    PubMed  Google Scholar 

  117. Garcia-Martinez JM, Moran J, Clarke RG, Gray A, Cosulich SC, Chresta CM et al. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). The Biochemical journal 2009; 421: 29–42.

    CAS  PubMed  Google Scholar 

  118. Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y et al. An ATP-competitive mTOR inhibitor reveals rapamycin-insensitive functions of mTORC1. J Biol Chem 2009; 284: 8023–8032.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Yu K, Toral-Barza L, Shi C, Zhang WG, Lucas J, Shor B et al. Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res 2009; 69: 6232–6240.

    CAS  PubMed  Google Scholar 

  120. Chresta CM, Davies BR, Hickson I, Harding T, Cosulich S, Critchlow SE et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res 2010; 70: 288–298.

    CAS  PubMed  Google Scholar 

  121. Janes MR, Limon JJ, So L, Chen J, Lim RJ, Chavez MA et al. Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nature medicine 2010; 16: 205–213.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Hsieh AC, Costa M, Zollo O, Davis C, Feldman ME, Testa JR et al. Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E. Cancer Cell 2010; 17: 249–261.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Chapuis N, Tamburini J, Macone A, Green A, Bardet V, Willems L et al. The PI3K/mTOR inhibitor NVP-BEZ235 is a promising pre-clinical candidate for therapeutic intervention in acute myeloid leukemia. Blood (ASH Annu Meet Abstr) 2009; 114: 1024.

  124. Baumann P, Mandl-Weber S, Oduncu F, Schmidmaier R . The novel orally bioavailable inhibitor of phosphoinositol-3-kinase and mammalian target of rapamycin, NVP-BEZ235, inhibits growth and proliferation in . Experimental cell research 2009; 315: 485–497.

    CAS  PubMed  Google Scholar 

  125. Bhatt AP, Bhende PM, Sin SH, Roy D, Dittmer DP, Damania B . Dual inhibition of PI3K and mTOR inhibits autocrine and paracrine proliferative loops in PI3K/Akt/mTOR-addicted lymphomas. Blood 2010; 115: 4455–4463.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Ligue Nationale Contre le Cancer (LNCC, laboratoire associé), the Institut National du Cancer (INCa), the Association Laurette Fugain. LW is recipient of grants from Institut National de la Santé Et de la Recherche Médicale (INSERM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Bouscary.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapuis, N., Tamburini, J., Green, A. et al. Perspectives on inhibiting mTOR as a future treatment strategy for hematological malignancies. Leukemia 24, 1686–1699 (2010). https://doi.org/10.1038/leu.2010.170

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.170

Keywords

This article is cited by

Search

Quick links