Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Leading Article
  • Published:

Genome-wide expression analysis of paired diagnosis–relapse samples in ALL indicates involvement of pathways related to DNA replication, cell cycle and DNA repair, independent of immune phenotype

Abstract

Almost a quarter of pediatric patients with acute lymphoblastic leukemia (ALL) suffer from relapses. The biological mechanisms underlying therapy response and development of relapses have remained unclear. In an attempt to better understand this phenomenon, we have analyzed 41 matched diagnosis–relapse pairs of ALL patients using genome-wide expression arrays (82 arrays) on purified leukemic cells. In roughly half of the patients, very few differences between diagnosis and relapse samples were found (‘stable group’), suggesting that mostly extra-leukemic factors (for example, drug distribution, drug metabolism, compliance) contributed to the relapse. Therefore, we focused our further analysis on 20 sample pairs with clear differences in gene expression (‘skewed group’), reasoning that these would allow us to better study the biological mechanisms underlying relapsed ALL. After finding the differences between diagnosis and relapse pairs in this group, we identified four major gene clusters corresponding to several pathways associated with changes in cell cycle, DNA replication, recombination and repair, as well as B-cell developmental genes. We also identified cancer genes commonly associated with colon carcinomas and ubiquitination to be upregulated in relapsed ALL. Thus, about half of the relapses are due to the selection or emergence of a clone with deregulated expression of genes involved in pathways that regulate B-cell signaling, development, cell cycle, cellular division and replication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Pieters R, Carroll WL . Biology and treatment of acute lymphoblastic leukemia. Pediatr Clin North Am 2008; 55: 1–20, ix.

    Article  Google Scholar 

  2. Carroll WL, Bhojwani D, Min DJ, Moskowitz N, Raetz EA . Childhood acute lymphoblastic leukemia in the age of genomics. Pediatr Blood Cancer 2006; 46: 570–578.

    Article  Google Scholar 

  3. Gaynon PS . Childhood acute lymphoblastic leukaemia and relapse. Br J Haematol 2005; 131: 579–587.

    Article  Google Scholar 

  4. Henderson MJ, Choi S, Beesley AH, Sutton R, Venn NC, Marshall GM et al. Mechanism of relapse in pediatric acute lymphoblastic leukemia. Cell Cycle 2008; 7: 1315–1320.

    Article  CAS  Google Scholar 

  5. Beesley AH, Cummings AJ, Freitas JR, Hoffmann K, Firth MJ, Ford J et al. The gene expression signature of relapse in paediatric acute lymphoblastic leukaemia: implications for mechanisms of therapy failure. Br J Haematol 2005; 131: 447–456.

    Article  CAS  Google Scholar 

  6. Bhojwani D, Kang H, Moskowitz NP, Min DJ, Lee H, Potter JW et al. Biologic pathways associated with relapse in childhood acute lymphoblastic leukemia: a Children's Oncology Group study. Blood 2006; 108: 711–717.

    Article  CAS  Google Scholar 

  7. Choi S, Henderson MJ, Kwan E, Beesley AH, Sutton R, Bahar AY et al. Relapse in children with acute lymphoblastic leukemia involving selection of a preexisting drug-resistant subclone. Blood 2007; 110: 632–639.

    Article  CAS  Google Scholar 

  8. Ferrando AA, Look AT . Gene expression profiling in T-cell acute lymphoblastic leukemia. Semin Hematol 2003; 40: 274–280.

    Article  CAS  Google Scholar 

  9. Ferrando AA, Look AT . DNA microarrays in the diagnosis and management of acute lymphoblastic leukemia. Int J Hematol 2004; 80: 395–400.

    Article  CAS  Google Scholar 

  10. Hoffmann K, Firth MJ, Beesley AH, de Klerk NH, Kees UR . Translating microarray data for diagnostic testing in childhood leukaemia. BMC Cancer 2006; 6: 229.

    Article  Google Scholar 

  11. Holleman A, Cheok MH, den Boer ML, Yang W, Veerman AJ, Kazemier KM et al. Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med 2004; 351: 533–542.

    Article  CAS  Google Scholar 

  12. Palomero T, McKenna K, J ON, Galinsky I, Stone R, Suzukawa K et al. Activating mutations in NOTCH1 in acute myeloid leukemia and lineage switch leukemias. Leukemia 2006; 20: 1963–1966.

    Article  CAS  Google Scholar 

  13. Raetz EA, Perkins SL, Bhojwani D, Smock K, Philip M, Carroll WL et al. Gene expression profiling reveals intrinsic differences between T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma. Pediatr Blood Cancer 2006; 47: 130–140.

    Article  Google Scholar 

  14. Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002; 1: 133–143.

    Article  CAS  Google Scholar 

  15. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30: 41–47.

    Article  CAS  Google Scholar 

  16. Ross ME, Mahfouz R, Onciu M, Liu HC, Zhou X, Song G et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood 2004; 104: 3679–3687.

    Article  CAS  Google Scholar 

  17. Ross ME, Zhou X, Song G, Shurtleff SA, Girtman K, Williams WK et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 2003; 102: 2951–2959.

    Article  CAS  Google Scholar 

  18. Staal FJ, van der Burg M, Wessels LF, Barendregt BH, Baert MR, van den Burg CM et al. DNA microarrays for comparison of gene expression profiles between diagnosis and relapse in precursor-B acute lymphoblastic leukemia: choice of technique and purification influence the identification of potential diagnostic markers. Leukemia 2003; 17: 1324–1332.

    Article  CAS  Google Scholar 

  19. de Ridder D, van der Linden CE, Schonewille T, Dik WA, Reinders MJ, van Dongen JJ et al. Purity for clarity: the need for purification of tumor cells in DNA microarray studies. Leukemia 2005; 19: 618–627.

    Article  CAS  Google Scholar 

  20. Staal FJ, Cario G, Cazzaniga G, Haferlach T, Heuser M, Hofmann WK et al. Consensus guidelines for microarray gene expression analyses in leukemia from three European leukemia networks. Leukemia 2006; 20: 1385–1392.

    Article  CAS  Google Scholar 

  21. Staal FJ, Weerkamp F, Baert MR, van den Burg CM, van Noort M, de Haas EF et al. Wnt target genes identified by DNA microarrays in immature CD34+ thymocytes regulate proliferation and cell adhesion. J Immunol 2004; 172: 1099–1108.

    Article  CAS  Google Scholar 

  22. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249–264.

    Article  Google Scholar 

  23. Bolstad BM, Irizarry RA, Astrand M, Speed TP . A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003; 19: 185–193.

    Article  CAS  Google Scholar 

  24. Tusher VG, Tibshirani R, Chu G . Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001; 98: 5116–5121.

    Article  CAS  Google Scholar 

  25. Verhagen OJ, Willemse MJ, Breunis WB, Wijkhuijs AJ, Jacobs DC, Joosten SA et al. Application of germline IGH probes in real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia. Leukemia 2000; 14: 1426–1435.

    Article  CAS  Google Scholar 

  26. Pongers-Willemse MJ, Seriu T, Stolz F, d’Aniello E, Gameiro P, Pisa P et al. Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: report of the BIOMED-1 CONCERTED ACTION: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 110–118.

    Article  CAS  Google Scholar 

  27. Szczepanski T, van der Velden VHJ, Hoogeveen PG, De Bie M, Jacobs DCH, Van Wering ER et al. V{delta}2-J{alpha} gene rearrangements are frequent in precursor-B-acute lymphoblastic leukemia but rare in normal lymphoid cells. Blood 2004; 103: 3798–3804.

    Article  CAS  Google Scholar 

  28. Szczepanski T, Willemse MJ, van Wering ER, van Weerden JF, Kamps WA, van Dongen JJM . Precursor-B-ALL with D(H)-J(H) gene rearrangements have an immature immunogenotype with a high frequency of oligoclonality and hyperdiploidy of chromosome 14. Leukemia 2001; 15: 1415–1423.

    Article  CAS  Google Scholar 

  29. van Dongen JJM, Langerak AW, Bruggemann M, Evans PAS, Hummel M, Lavender FL et al. Design and standardization of PCR primers and protocols for detection of clonal immunogloulin and T-cell receptor gene recombinations in suspect lymphoproliferations. Leukemia 2003; 17: 2257–2317.

    Article  CAS  Google Scholar 

  30. Szczepanski T, van der Velden VH, Raff T, Jacobs DC, van Wering ER, Bruggemann M et al. Comparative analysis of T-cell receptor gene rearrangements at diagnosis and relapse of T-cell acute lymphoblastic leukemia (T-ALL) shows high stability of clonal markers for monitoring of minimal residual disease and reveals the occurrence of second T-ALL. Leukemia 2003; 17: 2149–2156.

    Article  CAS  Google Scholar 

  31. Szczepanski T, Willemse MJ, Brinkhof B, van Wering ER, van der Burg M, van Dongen JJ . Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood 2002; 99: 2315–2323.

    Article  CAS  Google Scholar 

  32. Staal FJ, Luis TC, Tiemessen MM . WNT signalling in the immune system: WNT is spreading its wings. Nat Rev 2008; 8: 581–593.

    CAS  Google Scholar 

  33. Weerkamp F, van Dongen JJ, Staal FJ . Notch and Wnt signaling in T-lymphocyte development and acute lymphoblastic leukemia. Leukemia 2006; 20: 1197–1205.

    Article  CAS  Google Scholar 

  34. Kirschner-Schwabe R, Lottaz C, Todling J, Rhein P, Karawajew L, Eckert C et al. Expression of late cell cycle genes and an increased proliferative capacity characterize very early relapse of childhood acute lymphoblastic leukemia. Clin Cancer Res 2006; 12: 4553–4561.

    Article  CAS  Google Scholar 

  35. Beesley AH, Weller RE, Kees UR . The role of BSG (CD147) in acute lymphoblastic leukaemia and relapse. Br J Haematol 2008; 142: 1000–1002.

    Article  CAS  Google Scholar 

  36. Boag JM, Beesley AH, Firth MJ, Freitas JR, Ford J, Hoffmann K et al. Altered glucose metabolism in childhood pre-B acute lymphoblastic leukaemia. Leukemia 2006; 20: 1731–1737.

    Article  CAS  Google Scholar 

  37. Hoffmann K, Firth MJ, Beesley AH, Freitas JR, Ford J, Senanayake S et al. Prediction of relapse in paediatric pre-B acute lymphoblastic leukaemia using a three-gene risk index. Br J Haematol 2008; 140: 656–664.

    Article  CAS  Google Scholar 

  38. Mullighan CG, Phillips LA, Su X, Ma J, Miller CB, Shurtleff SA et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science (New York, NY) 2008; 322: 1377–1380.

    Article  CAS  Google Scholar 

  39. Davies DL, Bouldin D . A cluster separation measure. IEEE Trans Pattern Anal Mach Intell 1979; 1: 224–227.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Patricia Hoogeveen for technical assistance and Dr Ton Langerak for stimulating discussions. We also thank the Dutch Childhood Oncology Group (head: Dr Valerie de Haas) for help in providing samples and patient data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F J T Staal.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staal, F., de Ridder, D., Szczepanski, T. et al. Genome-wide expression analysis of paired diagnosis–relapse samples in ALL indicates involvement of pathways related to DNA replication, cell cycle and DNA repair, independent of immune phenotype. Leukemia 24, 491–499 (2010). https://doi.org/10.1038/leu.2009.286

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.286

Keywords

This article is cited by

Search

Quick links