Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Targeted therapy in T-cell malignancies: dysregulation of the cellular signaling pathways

Abstract

T-cell malignancies, mainly known as T-cell acute lymphoblastic leukemia (T-ALL) and T-cell non-Hodgkin’s lymphoma (T-NHL), are aggressive tumors. Although the clinical outcome of the patients has improved dramatically with combination chemotherapy, significant challenges remain, including understanding of the factors that contribute to the malignant behavior of these tumor cells and developing subsequently optimal targeted therapy. Aberrant cell signal transduction is generally involved in tumor progression and drug resistance. This review describes the pathogenetic role of multiple cellular signaling pathways in T-cell malignancies and the potential therapeutic strategies based on the modulation of these key signaling networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Vivanco I, Sawyers CL . The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2002; 2: 489–501.

    CAS  Google Scholar 

  2. Steelman LS, Abrams SL, Whelan J, Bertrand FE, Ludwig DE, Basecke J et al. Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia 2008; 22: 686–707.

    CAS  Google Scholar 

  3. McCubrey JA, Steelman LS, Abrams SL, Bertrand FE, Ludwig DE, Basecke J et al. Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy. Leukemia 2008; 22: 708–722.

    CAS  Google Scholar 

  4. Brown VI, Seif AE, Reid GS, Teachey DT, Grupp SA . Novel molecular and cellular therapeutic targets in acute lymphoblastic leukemia and lymphoproliferative disease. Immunol Res 2008; 42: 84–105.

    CAS  Google Scholar 

  5. Juntilla MM, Koretzky GA . Critical roles of the PI3K/Akt signaling pathway in T cell development. Immunol Lett 2008; 116: 104–110.

    CAS  Google Scholar 

  6. Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 2007; 13: 1203–1210.

    CAS  Google Scholar 

  7. Silva A, Yunes JA, Cardoso BA, Martins LR, Jotta PY, Abecasis M et al. PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability. J Clin Invest 2008; 118: 3762–3774.

    CAS  Google Scholar 

  8. Vega F, Medeiros LJ, Leventaki V, Atwell C, Cho-Vega JH, Tian L et al. Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Cancer Res 2006; 66: 6589–6597.

    CAS  Google Scholar 

  9. Fukuda RI, Tsuchiya K, Suzuki K, Itoh K, Fujita J, Utsunomiya A et al. Human T-cell leukemia virus type I Tax down-regulates the expression of phosphatidylinositol 3,4,5-trisphosphate inositol phosphatases via the NF-{kappa}B pathway. J Biol Chem 2009; 284: 2680–2689.

    CAS  Google Scholar 

  10. Ikezoe T, Nishioka C, Bandobashi K, Yang Y, Kuwayama Y, Adachi Y et al. Longitudinal inhibition of PI3K/Akt/mTOR signaling by LY294002 and rapamycin induces growth arrest of adult T-cell leukemia cells. Leuk Res 2007; 31: 673–682.

    CAS  Google Scholar 

  11. Jeon YK, Park CH, Kim KY, Li YC, Kim J, Kim YA et al. The heat-shock protein 90 inhibitor, geldanamycin, induces apoptotic cell death in Epstein-Barr virus-positive NK/T-cell lymphoma by Akt down-regulation. J Pathol 2007; 213: 170–179.

    CAS  Google Scholar 

  12. Schade AE, Powers JJ, Wlodarski MW, Maciejewski JP . Phosphatidylinositol-3-phosphate kinase pathway activation protects leukemic large granular lymphocytes from undergoing homeostatic apoptosis. Blood 2006; 107: 4834–4840.

    CAS  Google Scholar 

  13. Marzec M, Liu X, Kasprzycka M, Witkiewicz A, Raghunath PN, El-Salem M et al. IL-2- and IL-15-induced activation of the rapamycin-sensitive mTORC1 pathway in malignant CD4+ T lymphocytes. Blood 2008; 111: 2181–2189.

    CAS  Google Scholar 

  14. Zhao YM, Zhou Q, Xu Y, Lai XY, Huang H . Antiproliferative effect of rapamycin on human T-cell leukemia cell line Jurkat by cell cycle arrest and telomerase inhibition. Acta Pharmacol Sin 2008; 29: 481–488.

    CAS  Google Scholar 

  15. Avellino R, Romano S, Parasole R, Bisogni R, Lamberti A, Poggi V et al. Rapamycin stimulates apoptosis of childhood acute lymphoblastic leukemia cells. Blood 2005; 106: 1400–1406.

    CAS  Google Scholar 

  16. Marzec M, Kasprzycka M, Liu X, El-Salem M, Halasa K, Raghunath PN et al. Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycin-sensitive mTOR signaling pathway. Oncogene 2007; 26: 5606–5614.

    CAS  Google Scholar 

  17. Wei G, Twomey D, Lamb J, Schlis K, Agarwal J, Stam RW et al. Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell 2006; 10: 331–342.

    Article  CAS  Google Scholar 

  18. Easton JB, Houghton PJ . mTOR and cancer therapy. Oncogene 2006; 25: 6436–6446.

    CAS  Google Scholar 

  19. Yap TA, Garrett MD, Walton MI, Raynaud F, de Bono JS, Workman P . Targeting the PI3K-AKT-mTOR pathway: progress, pitfalls, and promises. Curr Opin Pharmacol 2008; 8: 393–412.

    CAS  Google Scholar 

  20. Fan QW, Knight ZA, Goldenberg DD, Yu W, Mostov KE, Stokoe D et al. A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell 2006; 9: 341–349.

    CAS  Google Scholar 

  21. Chiarini F, Fala F, Tazzari PL, Ricci F, Astolfi A, Pession A et al. Dual inhibition of class IA phosphatidylinositol 3-kinase and mammalian target of rapamycin as a new therapeutic option for T-cell acute lymphoblastic leukemia. Cancer Res 2009; 69: 3520–3528.

    CAS  Google Scholar 

  22. Chiarini F, Del Sole M, Mongiorgi S, Gaboardi GC, Cappellini A, Mantovani I et al. The novel Akt inhibitor, perifosine, induces caspase-dependent apoptosis and downregulates P-glycoprotein expression in multidrug-resistant human T-acute leukemia cells by a JNK-dependent mechanism. Leukemia 2008; 22: 1106–1116.

    CAS  Google Scholar 

  23. Nyakern M, Cappellini A, Mantovani I, Martelli AM . Synergistic induction of apoptosis in human leukemia T cells by the Akt inhibitor perifosine and etoposide through activation of intrinsic and Fas-mediated extrinsic cell death pathways. Mol Cancer Ther 2006; 5: 1559–1570.

    CAS  Google Scholar 

  24. Fala F, Blalock WL, Tazzari PL, Cappellini A, Chiarini F, Martinelli G et al. Proapoptotic activity and chemosensitizing effect of the novel Akt inhibitor (2S)-1-(1H-Indol-3-yl)-3-[5-(3-methyl-2H-indazol-5-yl)pyridin-3-yl]oxypropan2-ami ne (A443654) in T-cell acute lymphoblastic leukemia. Mol Pharmacol 2008; 74: 884–895.

    CAS  Google Scholar 

  25. Querfeld C, Rizvi MA, Kuzel TM, Guitart J, Rademaker A, Sabharwal SS et al. The selective protein kinase C beta inhibitor enzastaurin induces apoptosis in cutaneous T-cell lymphoma cell lines through the AKT pathway. J Invest Dermatol 2006; 126: 1641–1647.

    CAS  Google Scholar 

  26. Cecchinato V, Chiaramonte R, Nizzardo M, Cristofaro B, Basile A, Sherbet GV et al. Resveratrol-induced apoptosis in human T-cell acute lymphoblastic leukaemia MOLT-4 cells. Biochem Pharmacol 2007; 74: 1568–1574.

    CAS  Google Scholar 

  27. Park SS, Kim YN, Jeon YK, Kim YA, Kim JE, Kim H et al. Genistein-induced apoptosis via Akt signaling pathway in anaplastic large-cell lymphoma. Cancer Chemother Pharmacol 2005; 56: 271–278.

    CAS  Google Scholar 

  28. Hussain AR, Al-Rasheed M, Manogaran PS, Al-Hussein KA, Platanias LC, Al Kuraya K et al. Curcumin induces apoptosis via inhibition of PI3′-kinase/AKT pathway in acute T-cell leukemias. Apoptosis 2006; 11: 245–254.

    CAS  Google Scholar 

  29. Radtke F, Wilson A, Mancini SJ, MacDonald HR . Notch regulation of lymphocyte development and function. Nat Immunol 2004; 5: 247–253.

    CAS  Google Scholar 

  30. Aster JC, Pear WS, Blacklow SC . Notch signaling in leukemia. Annu Rev Pathol 2008; 3: 587–613.

    CAS  Google Scholar 

  31. Gonzalez-Garcia S, Garcia-Peydro M, Martin-Gayo E, Ballestar E, Esteller M, Bornstein R et al. CSL-MAML-dependent Notch1 signaling controls T lineage-specific IL-7R{alpha} gene expression in early human thymopoiesis and leukemia. J Exp Med 2009; 206: 779–791.

    CAS  Google Scholar 

  32. Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991; 66: 649–661.

    CAS  Google Scholar 

  33. Pear WS, Aster JC, Scott ML, Hasserjian RP, Soffer B, Sklar J et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med 1996; 183: 2283–2291.

    CAS  Google Scholar 

  34. Weng AP, Nam Y, Wolfe MS, Pear WS, Griffin JD, Blacklow SC et al. Growth suppression of pre-T acute lymphoblastic leukemia cells by inhibition of notch signaling. Mol Cell Biol 2003; 23: 655–664.

    CAS  Google Scholar 

  35. Weng AP, Ferrando AA, Lee W, Morris 4th JP, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    CAS  Google Scholar 

  36. Lopez-Nieva P, Santos J, Fernandez-Piqueras J . Defective expression of Notch1 and Notch2 in connection to alterations of c-Myc and Ikaros in gamma-radiation-induced mouse thymic lymphomas. Carcinogenesis 2004; 25: 1299–1304.

    CAS  Google Scholar 

  37. Jundt F, Anagnostopoulos I, Forster R, Mathas S, Stein H, Dorken B . Activated Notch1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood 2002; 99: 3398–3403.

    CAS  Google Scholar 

  38. Kamstrup MR, Ralfkiaer E, Skovgaard GL, Gniadecki R . Potential involvement of Notch1 signalling in the pathogenesis of primary cutaneous CD30-positive lymphoproliferative disorders. Br J Dermatol 2008; 158: 747–753.

    CAS  Google Scholar 

  39. Bellavia D, Campese AF, Alesse E, Vacca A, Felli MP, Balestri A et al. Constitutive activation of NF-kappaB and T-cell leukemia/lymphoma in Notch3 transgenic mice. EMBO J 2000; 19: 3337–3348.

    CAS  Google Scholar 

  40. Indraccolo S, Minuzzo S, Masiero M, Pusceddu I, Persano L, Moserle L et al. Cross-talk between tumor and endothelial cells involving the Notch3-Dll4 interaction marks escape from tumor dormancy. Cancer Res 2009; 69: 1314–1323.

    CAS  Google Scholar 

  41. Vercauteren SM, Sutherland HJ . Constitutively active Notch4 promotes early human hematopoietic progenitor cell maintenance while inhibiting differentiation and causes lymphoid abnormalities in vivo. Blood 2004; 104: 2315–2322.

    CAS  Google Scholar 

  42. Palomero T, Dominguez M, Ferrando AA . The role of the PTEN/AKT Pathway in NOTCH1-induced leukemia. Cell Cycle 2008; 7: 965–970.

    CAS  Google Scholar 

  43. Cullion K, Draheim KM, Hermance N, Tammam J, Sharma VM, Ware C et al. Targeting the Notch1 and mTOR pathways in a mouse T-ALL model. Blood 2009; 113: 6172–6181.

    CAS  Google Scholar 

  44. Joshi I, Minter LM, Telfer J, Demarest RM, Capobianco AJ, Aster JC et al. Notch signaling mediates G1/S cell-cycle progression in T cells via cyclin D3 and its dependent kinases. Blood 2009; 113: 1689–1698.

    CAS  Google Scholar 

  45. Schindler C, Levy DE, Decker T . JAK-STAT signaling: from interferons to cytokines. J Biol Chem 2007; 282: 20059–20063.

    CAS  Google Scholar 

  46. Constantinescu SN, Girardot M, Pecquet C . Mining for JAK-STAT mutations in cancer. Trends Biochem Sci 2008; 33: 122–131.

    CAS  Google Scholar 

  47. Wei L, Laurence A, O’Shea JJ . New insights into the roles of Stat5a/b and Stat3 in T-cell development and differentiation. Semin Cell Dev Biol 2008; 19: 394–400.

    CAS  Google Scholar 

  48. Lacronique V, Boureux A, Valle VD, Poirel H, Quang CT, Mauchauffe M et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 1997; 278: 1309–1312.

    CAS  Google Scholar 

  49. Schwaller J, Frantsve J, Aster J, Williams IR, Tomasson MH, Ross TS et al. Transformation of hematopoietic cell lines to growth-factor independence and induction of a fatal myelo- and lymphoproliferative disease in mice by retrovirally transduced TEL/JAK2 fusion genes. EMBO J 1998; 17: 5321–5333.

    CAS  Google Scholar 

  50. Flex E, Petrangeli V, Stella L, Chiaretti S, Hornakova T, Knoops L et al. Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia. J Exp Med 2008; 205: 751–758.

    CAS  Google Scholar 

  51. Adelaide J, Perot C, Gelsi-Boyer V, Pautas C, Murati A, Copie-Bergman C et al. A t(8;9) translocation with PCM1-JAK2 fusion in a patient with T-cell lymphoma. Leukemia 2006; 20: 536–537.

    CAS  Google Scholar 

  52. Meier C, Hoeller S, Bourgau C, Hirschmann P, Schwaller J, Went P et al. Recurrent numerical aberrations of JAK2 and deregulation of the JAK2-STAT cascade in lymphomas. Mod Pathol 2009; 22: 476–487.

    CAS  Google Scholar 

  53. Ballester B, Ramuz O, Gisselbrecht C, Doucet G, Loi L, Loriod B et al. Gene expression profiling identifies molecular subgroups among nodal peripheral T-cell lymphomas. Oncogene 2006; 25: 1560–1570.

    CAS  Google Scholar 

  54. Ruchatz H, Coluccia AM, Stano P, Marchesi E, Gambacorti-Passerini C . Constitutive activation of Jak2 contributes to proliferation and resistance to apoptosis in NPM/ALK-transformed cells. Exp Hematol 2003; 31: 309–315.

    CAS  Google Scholar 

  55. Zamo A, Chiarle R, Piva R, Howes J, Fan Y, Chilosi M et al. Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene 2002; 21: 1038–1047.

    CAS  Google Scholar 

  56. Kirken RA, Erwin RA, Wang L, Wang Y, Rui H, Farrar WL . Functional uncoupling of the Janus kinase 3-Stat5 pathway in malignant growth of human T-cell leukemia virus type 1-transformed human T cells. J Immunol 2000; 165: 5097–5104.

    CAS  Google Scholar 

  57. Schade AE, Wlodarski MW, Maciejewski JP . Pathophysiology defined by altered signal transduction pathways: the role of JAK-STAT and PI3 K signaling in leukemic large granular lymphocytes. Cell Cycle 2006; 5: 2571–2574.

    CAS  Google Scholar 

  58. Sommer VH, Clemmensen OJ, Nielsen O, Wasik M, Lovato P, Brender C et al. In vivo activation of STAT3 in cutaneous T-cell lymphoma. Evidence for an antiapoptotic function of STAT3. Leukemia 2004; 18: 1288–1295.

    CAS  Google Scholar 

  59. Mitchell TJ, Whittaker SJ, John S . Dysregulated expression of COOH-terminally truncated Stat5 and loss of IL2-inducible Stat5-dependent gene expression in Sezary syndrome. Cancer Res 2003; 63: 9048–9054.

    CAS  Google Scholar 

  60. Marzec M, Kasprzycka M, Ptasznik A, Wlodarski P, Zhang Q, Odum N et al. Inhibition of ALK enzymatic activity in T-cell lymphoma cells induces apoptosis and suppresses proliferation and STAT3 phosphorylation independently of Jak3. Lab Invest 2005; 85: 1544–1554.

    CAS  Google Scholar 

  61. Wang LH, Kirken RA, Erwin RA, Yu CR, Farrar WL . JAK3, STAT, and MAPK signaling pathways as novel molecular targets for the tyrphostin AG-490 regulation of IL-2-mediated T-cell response. J Immunol 1999; 162: 3897–3904.

    CAS  Google Scholar 

  62. Epling-Burnette PK, Liu JH, Catlett-Falcone R, Turkson J, Oshiro M, Kothapalli R et al. Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J Clin Invest 2001; 107: 351–362.

    CAS  Google Scholar 

  63. Eriksen KW, Kaltoft K, Mikkelsen G, Nielsen M, Zhang Q, Geisler C et al. Constitutive STAT3-activation in Sezary syndrome: tyrphostin AG490 inhibits STAT3-activation, interleukin-2 receptor expression and growth of leukemic Sezary cells. Leukemia 2001; 15: 787–793.

    CAS  Google Scholar 

  64. Rajasingh J, Raikwar HP, Muthian G, Johnson C, Bright JJ . Curcumin induces growth-arrest and apoptosis in association with the inhibition of constitutively active JAK-STAT pathway in T-cell leukemia. Biochem Biophys Res Commun 2006; 340: 359–368.

    CAS  Google Scholar 

  65. van Kester MS, Out-Luiting JJ, von dem Borne PA, Willemze R, Tensen CP, Vermeer MH . Cucurbitacin I inhibits Stat3 and induces apoptosis in Sezary cells. J Invest Dermatol 2008; 128: 1691–1695.

    CAS  Google Scholar 

  66. Zhang C, Li B, Gaikwad AS, Haridas V, Xu Z, Gutterman JU et al. Avicin D selectively induces apoptosis and downregulates p-STAT-3, bcl-2, and survivin in cutaneous T-cell lymphoma cells. J Invest Dermatol 2008; 128: 2728–2735.

    CAS  Google Scholar 

  67. Fantin VR, Loboda A, Paweletz CP, Hendrickson RC, Pierce JW, Roth JA et al. Constitutive activation of signal transducers and activators of transcription predicts vorinostat resistance in cutaneous T-cell lymphoma. Cancer Res 2008; 68: 3785–3794.

    CAS  Google Scholar 

  68. Karin M, Cao Y, Greten FR, Li ZW . NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2002; 2: 301–310.

    CAS  Google Scholar 

  69. Sen J, Venkataraman L, Shinkai Y, Pierce JW, Alt FW, Burakoff SJ et al. Expression and induction of nuclear factor-kappa B-related proteins in thymocytes. J Immunol 1995; 154: 3213–3221.

    CAS  Google Scholar 

  70. Mora AL, Stanley S, Armistead W, Chan AC, Boothby M . Inefficient ZAP-70 phosphorylation and decreased thymic selection in vivo result from inhibition of NF-kappaB/Rel. J Immunol 2001; 167: 5628–5635.

    CAS  Google Scholar 

  71. Schmidt-Supprian M, Tian J, Grant EP, Pasparakis M, Maehr R, Ovaa H et al. Differential dependence of CD4+CD25+ regulatory and natural killer-like T cells on signals leading to NF-kappaB activation. Proc Natl Acad Sci USA 2004; 101: 4566–4571.

    CAS  Google Scholar 

  72. Kordes U, Krappmann D, Heissmeyer V, Ludwig WD, Scheidereit C . Transcription factor NF-kappaB is constitutively activated in acute lymphoblastic leukemia cells. Leukemia 2000; 14: 399–402.

    CAS  Google Scholar 

  73. dos Santos NR, Williame M, Gachet S, Cormier F, Janin A, Weih D et al. RelB-dependent stromal cells promote T-cell leukemogenesis. PLoS ONE 2008; 3: e2555.

    Google Scholar 

  74. Arima N, Matsushita K, Obata H, Ohtsubo H, Fujiwara H, Arimura K et al. NF-kappaB involvement in the activation of primary adult T-cell leukemia cells and its clinical implications. Exp Hematol 1999; 27: 1168–1175.

    CAS  Google Scholar 

  75. Kim JH, Kim WS, Kang JH, Lim HY, Ko YH, Park C . Egr-1, a new downstream molecule of Epstein-Barr virus latent membrane protein 1. FEBS Lett 2007; 581: 623–628.

    CAS  Google Scholar 

  76. Zinzani PL, Musuraca G, Tani M, Stefoni V, Marchi E, Fina M et al. Phase II trial of proteasome inhibitor bortezomib in patients with relapsed or refractory cutaneous T-cell lymphoma. J Clin Oncol 2007; 25: 4293–4297.

    CAS  Google Scholar 

  77. Nasr R, El-Sabban ME, Karam JA, Dbaibo G, Kfoury Y, Arnulf B et al. Efficacy and mechanism of action of the proteasome inhibitor PS-341 in T-cell lymphomas and HTLV-I associated adult T-cell leukemia/lymphoma. Oncogene 2005; 24: 419–430.

    CAS  Google Scholar 

  78. Lee J, Suh C, Kang HJ, Ryoo BY, Huh J, Ko YH et al. Phase I study of proteasome inhibitor bortezomib plus CHOP in patients with advanced, aggressive T-cell or NK/T-cell lymphoma. Ann Oncol 2008; 19: 2079–2083.

    CAS  Google Scholar 

  79. Yan P, Qing G, Qu Z, Wu CC, Rabson A, Xiao G . Targeting autophagic regulation of NF-kappaB in HTLV-I transformed cells by geldanamycin: implications for therapeutic interventions. Autophagy 2007; 3: 600–603.

    CAS  Google Scholar 

  80. Ariga A, Namekawa J, Matsumoto N, Inoue J, Umezawa K . Inhibition of tumor necrosis factor-alpha -induced nuclear translocation and activation of NF-kappa B by dehydroxymethylepoxyquinomicin. J Biol Chem 2002; 277: 24625–24630.

    CAS  Google Scholar 

  81. Gohda J, Inoue J, Umezawa K . Down-regulation of TNF-alpha receptors by conophylline in human T-cell leukemia cells. Int J Oncol 2003; 23: 1373–1379.

    CAS  Google Scholar 

  82. Medyouf H, Ghysdael J . The calcineurin/NFAT signaling pathway: a novel therapeutic target in leukemia and solid tumors. Cell Cycle 2008; 7: 297–303.

    CAS  Google Scholar 

  83. Neilson JR, Winslow MM, Hur EM, Crabtree GR . Calcineurin B1 is essential for positive but not negative selection during thymocyte development. Immunity 2004; 20: 255–266.

    CAS  Google Scholar 

  84. Marafioti T, Pozzobon M, Hansmann ML, Ventura R, Pileri SA, Roberton H et al. The NFATc1 transcription factor is widely expressed in white cells and translocates from the cytoplasm to the nucleus in a subset of human lymphomas. Br J Haematol 2005; 128: 333–342.

    CAS  Google Scholar 

  85. Medyouf H, Alcalde H, Berthier C, Guillemin MC, dos Santos NR, Janin A et al. Targeting calcineurin activation as a therapeutic strategy for T-cell acute lymphoblastic leukemia. Nat Med 2007; 13: 736–741.

    CAS  Google Scholar 

  86. Glud SZ, Sorensen AB, Andrulis M, Wang B, Kondo E, Jessen R et al. A tumor-suppressor function for NFATc3 in T-cell lymphomagenesis by murine leukemia virus. Blood 2005; 106: 3546–3552.

    CAS  Google Scholar 

  87. Dumont FJ, Koprak S, Staruch MJ, Talento A, Koo G, DaSilva C et al. A tacrolimus-related immunosuppressant with reduced toxicity. Transplantation 1998; 65: 18–26.

    CAS  Google Scholar 

  88. Stalder M, Birsan T, Hubble RW, Paniagua RT, Morris RE . In vivo evaluation of the novel calcineurin inhibitor ISATX247 in non-human primates. J Heart Lung Transplant 2003; 22: 1343–1352.

    Google Scholar 

  89. Schaeffer HJ, Weber MJ . Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 1999; 19: 2435–2444.

    CAS  Google Scholar 

  90. McNeil LK, Starr TK, Hogquist KA . A requirement for sustained ERK signaling during thymocyte positive selection in vivo. Proc Natl Acad Sci USA 2005; 102: 13574–13579.

    CAS  Google Scholar 

  91. Sugawara T, Moriguchi T, Nishida E, Takahama Y . Differential roles of ERK and p38 MAP kinase pathways in positive and negative selection of T lymphocytes. Immunity 1998; 9: 565–574.

    CAS  Google Scholar 

  92. Sabapathy K, Kallunki T, David JP, Graef I, Karin M, Wagner EF . c-Jun NH2-terminal kinase (JNK)1 and JNK2 have similar and stage-dependent roles in regulating T-cell apoptosis and proliferation. J Exp Med 2001; 193: 317–328.

    CAS  Google Scholar 

  93. Cheng JT, Cobb MH, Baer R . Phosphorylation of the TAL1 oncoprotein by the extracellular-signal-regulated protein kinase ERK1. Mol Cell Biol 1993; 13: 801–808.

    CAS  Google Scholar 

  94. Wadman IA, Hsu HL, Cobb MH, Baer R . The MAP kinase phosphorylation site of TAL1 occurs within a transcriptional activation domain. Oncogene 1994; 9: 3713–3716.

    CAS  Google Scholar 

  95. Leung KT, Li KK, Sun SS, Chan PK, Ooi VE, Chiu LC . Activation of the JNK pathway promotes phosphorylation and degradation of BimEL--a novel mechanism of chemoresistance in T-cell acute lymphoblastic leukemia. Carcinogenesis 2008; 29: 544–551.

    CAS  Google Scholar 

  96. Leventaki V, Drakos E, Medeiros LJ, Lim MS, Elenitoba-Johnson KS, Claret FX et al. NPM-ALK oncogenic kinase promotes cell-cycle progression through activation of JNK/cJun signaling in anaplastic large-cell lymphoma. Blood 2007; 110: 1621–1630.

    CAS  Google Scholar 

  97. Mao X, Orchard G, Mitchell TJ, Oyama N, Russell-Jones R, Vermeer MH et al. A genomic and expression study of AP-1 in primary cutaneous T-cell lymphoma: evidence for dysregulated expression of JUNB and JUND in MF and SS. J Cutan Pathol 2008; 35: 899–910.

    Google Scholar 

  98. Krejsgaard T, Vetter-Kauczok CS, Woetmann A, Lovato P, Labuda T, Eriksen KW et al. Jak3- and JNK-dependent vascular endothelial growth factor expression in cutaneous T-cell lymphoma. Leukemia 2006; 20: 1759–1766.

    CAS  Google Scholar 

  99. Lu J, Quearry B, Harada H . p38-MAP kinase activation followed by BIM induction is essential for glucocorticoid-induced apoptosis in lymphoblastic leukemia cells. FEBS Lett 2006; 580: 3539–3544.

    CAS  Google Scholar 

  100. Conrad DM, Robichaud MR, Mader JS, Boudreau RT, Richardson AM, Giacomantonio CA et al. 2-Chloro-2′-deoxyadenosine-induced apoptosis in T leukemia cells is mediated via a caspase-3-dependent mitochondrial feedback amplification loop. Int J Oncol 2008; 32: 1325–1333.

    CAS  Google Scholar 

  101. Turella P, Cerella C, Filomeni G, Bullo A, De Maria F, Ghibelli L et al. Proapoptotic activity of new glutathione S-transferase inhibitors. Cancer Res 2005; 65: 3751–3761.

    CAS  Google Scholar 

  102. Zhang W, McQueen T, Schober W, Rassidakis G, Andreeff M, Konopleva M . Leukotriene B4 receptor inhibitor LY293111 induces cell cycle arrest and apoptosis in human anaplastic large-cell lymphoma cells via JNK phosphorylation. Leukemia 2005; 19: 1977–1984.

    CAS  Google Scholar 

  103. Tsuboi H, Hossain K, Akhand AA, Takeda K, Du J, Rifa’i M et al. Paeoniflorin induces apoptosis of lymphocytes through a redox-linked mechanism. J Cell Biochem 2004; 93: 162–172.

    CAS  Google Scholar 

  104. Miyoshi N, Uchida K, Osawa T, Nakamura Y . A link between benzyl isothiocyanate-induced cell cycle arrest and apoptosis: involvement of mitogen-activated protein kinases in the Bcl-2 phosphorylation. Cancer Res 2004; 64: 2134–2142.

    CAS  Google Scholar 

  105. Yoeli-Lerner M, Chin YR, Hansen CK, Toker A . Akt/protein kinase b and glycogen synthase kinase-3beta signaling pathway regulates cell migration through the NFAT1 transcription factor. Mol Cancer Res 2009; 7: 425–432.

    CAS  Google Scholar 

  106. Vilimas T, Mascarenhas J, Palomero T, Mandal M, Buonamici S, Meng F et al. Targeting the NF-kappaB signaling pathway in Notch1-induced T-cell leukemia. Nat Med 2007; 13: 70–77.

    CAS  Google Scholar 

  107. Felli MP, Vacca A, Calce A, Bellavia D, Campese AF, Grillo R et al. PKC theta mediates pre-TCR signaling and contributes to Notch3-induced T-cell leukemia. Oncogene 2005; 24: 992–1000.

    CAS  Google Scholar 

  108. Kamakura S, Oishi K, Yoshimatsu T, Nakafuku M, Masuyama N, Gotoh Y . Hes binding to STAT3 mediates crosstalk between Notch and JAK-STAT signalling. Nat Cell Biol 2004; 6: 547–554.

    CAS  Google Scholar 

  109. Mammucari C, Tommasi di Vignano A, Sharov AA, Neilson J, Havrda MC, Roop DR et al. Integration of Notch 1 and calcineurin/NFAT signaling pathways in keratinocyte growth and differentiation control. Dev Cell 2005; 8: 665–676.

    CAS  Google Scholar 

  110. Kim JW, Kim MJ, Kim KJ, Yun HJ, Chae JS, Hwang SG et al. Notch interferes with the scaffold function of JNK-interacting protein 1 to inhibit the JNK signaling pathway. Proc Natl Acad Sci USA 2005; 102: 14308–14313.

    CAS  Google Scholar 

  111. Xuan YT, Guo Y, Zhu Y, Wang OL, Rokosh G, Messing RO et al. Role of the protein kinase C-epsilon-Raf-1-MEK-1/2-p44/42 MAPK signaling cascade in the activation of signal transducers and activators of transcription 1 and 3 and induction of cyclooxygenase-2 after ischemic preconditioning. Circulation 2005; 112: 1971–1978.

    CAS  Google Scholar 

  112. Pircher TJ, Petersen H, Gustafsson JA, Haldosen LA . Extracellular signal-regulated kinase (ERK) interacts with signal transducer and activator of transcription (STAT) 5a. Mol Endocrinol 1999; 13: 555–565.

    CAS  Google Scholar 

  113. Liu Q, Wilkins BJ, Lee YJ, Ichijo H, Molkentin JD . Direct interaction and reciprocal regulation between ASK1 and calcineurin-NFAT control cardiomyocyte death and growth. Mol Cell Biol 2006; 26: 3785–3797.

    CAS  Google Scholar 

  114. Yu C, Friday BB, Lai JP, Yang L, Sarkaria J, Kay NE et al. Cytotoxic synergy between the multikinase inhibitor sorafenib and the proteasome inhibitor bortezomib in vitro: induction of apoptosis through Akt and c-Jun NH2-terminal kinase pathways. Mol Cancer Ther 2006; 5: 2378–2387.

    CAS  Google Scholar 

  115. Zhang QL, Wang L, Zhang YW, Jiang XX, Yang F, Wu WL et al. The proteasome inhibitor bortezomib interacts synergistically with the histone deacetylase inhibitor suberoylanilide hydroxamic acid to induce T-leukemia/lymphoma cells apoptosis. Leukemia 2009; 23: 1507–1514.

    CAS  Google Scholar 

  116. Sarkar FH, Li Y, Wang Z, Kong D . Cellular signaling perturbation by natural products. Cell Signal 2009; 21: 1541–1547.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by the Chinese National Key Program for Basic Research (973:2004CB518600), the Chinese National High Tech Program (863:2006AA02A301 and 863:2006AA02A405), the National Natural Science Foundation of China (30750335), the Shanghai Commission of Science and Technology (08410708800), the Shanghai Rising Star Program (09QH1401700), the Program for New Century Excellent Talents in University, the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the Fok Ying Tung Education Foundation (111035), the Programme de Recherches Avancées, and by the Samuel Waxman Cancer Research Foundation Laboratory, the Co-PI Program of Shanghai Rui Jin Hospital/Shanghai Jiao Tong University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W-L Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, WL. Targeted therapy in T-cell malignancies: dysregulation of the cellular signaling pathways. Leukemia 24, 13–21 (2010). https://doi.org/10.1038/leu.2009.223

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.223

Keywords

This article is cited by

Search

Quick links