Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem Cells

Novel epigenetic mechanisms that control pluripotency and quiescence of adult bone marrow-derived Oct4+ very small embryonic-like stem cells

Abstract

Recently, we identified in adult tissues a population of Oct4+SSEA-1+Sca-1+linCD45 very small embryonic-like stem cells (VSELs). First, to address recent controversies on Oct4 expression in cells isolated from adult organs, we show here evidence that Oct4 promoter in bone marrow (BM)-derived VSELs has an open chromatin structure and is actively transcribed. Next, to explain VSELs quiescence and lack of teratoma formation, we demonstrate a unique DNA methylation pattern at some developmentally crucial imprinted genes, showing hypomethylation/erasure of imprints in paternally methylated and hypermethylation of imprints in maternally methylated ones. These epigenetic characteristics leading to upregulation in VSELs of H19 and p57KIP2 (also known as Cdkn1c) and repression of Igf2 and Rasgrf1 explain VSEL's quiescent status. Interestingly, this unique pattern in imprinted gene methylation is reverted in cocultures with a C2C12 supportive cell-line when VSELs are induced to form VSEL-derived spheres (VSEL-DSs) enriched for stem cells able to differentiate into all three germ layers. Therefore, we suggest that the proliferative/developmental potential of Oct4+ VSELs is epigenetically regulated by expression of Oct4 and some imprinted genes, and postulate that restoring the proper methylation pattern of imprinted genes will be a crucial step for using these cells in regenerative medicine.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Evans MJ, Kaufman MH . Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292: 154–156.

    Article  CAS  Google Scholar 

  2. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 2007; 448: 196–199.

    Article  CAS  Google Scholar 

  3. Matsui Y, Zsebo K, Hogan BLM . Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 1992; 70: 841–847.

    Article  CAS  Google Scholar 

  4. Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.

    Article  CAS  Google Scholar 

  5. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 2007; 448: 318–324.

    Article  CAS  Google Scholar 

  6. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41–49.

    Article  CAS  Google Scholar 

  7. D'Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC . Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 2004; 117: 2971–2981.

    Article  CAS  Google Scholar 

  8. Liedtke S, Enczmann Jg, Waclawczyk S, Wernet P, Kogler G . Oct4 and its pseudogenes confuse stem cell research. Cell Stem Cell 2007; 1: 364–366.

    Article  CAS  Google Scholar 

  9. Lengner CJ, Camargo FD, Hochedlinger K, Welstead GG, Zaidi S, Gokhale S et al. Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell Stem Cell 2007; 1: 403–415.

    Article  CAS  Google Scholar 

  10. Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J et al. A population of very small embryonic-like (VSEL) CXCR4+SSEA-1+Oct-4+ stem cells identified in adult bone marrow. Leukemia 2006; 20: 857–869.

    Article  CAS  Google Scholar 

  11. Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiuk M, Moldenhawer S, Zuba-Surma E et al. Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood - preliminary report. Leukemia 2006; 21: 297–303.

    Article  Google Scholar 

  12. Kucia M, Zhang YP, Reca R, Wysoczynski M, Machalinski B, Majka M et al. Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke. Leukemia 2005; 20: 18–28.

    Article  Google Scholar 

  13. Wojakowski W, Tendera M, Kucia M, Zuba-Surma E, Paczkowska E, Ciosek J et al. Mobilization of bone marrow-derived Oct-4+ SSEA-4+ very small embryonic-like stem cells in patients with acute myocardial infarction. J Am Coll Cardio 2009; 53: 1–9.

    Article  CAS  Google Scholar 

  14. Paczkowska E, Kucia M, Koziarska D, Halasa M, Safranow K, Masiuk M et al. Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke 2009; 40: 1237–1244.

    Article  CAS  Google Scholar 

  15. Ratajczak MZ, Machalinski B, Wojakowski W, Ratajczak J, Kucia M . A hypothesis for an embryonic origin of pluripotent Oct-4+ stem cells in adult bone marrow and other tissues. Leukemia 2007; 21: 860–867.

    Article  CAS  Google Scholar 

  16. Reik W, Walter J . Genomic imprinting: parental influence on the genome. Nat Rev Genet 2001; 2: 21–32.

    Article  CAS  Google Scholar 

  17. Yamazaki Y, Mann MR, Lee SS, Marh J, McCarrey JR, Yanagimachi R et al. Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proc Natl Acad Sci USA 2003; 100: 12207–12212.

    Article  CAS  Google Scholar 

  18. Horii T, Kimura M, Morita S, Nagao Y, Hatada I . Loss of genomic imprinting in mouse parthenogenetic embryonic stem cells. Stem Cells 2008; 26: 79–88.

    Article  CAS  Google Scholar 

  19. Pannetier Ml, Feil R . Epigenetic stability of embryonic stem cells and developmental potential. Trends Biotechnol 2007; 25: 556–562.

    Article  CAS  Google Scholar 

  20. Delaval K, Feil R . Epigenetic regulation of mammalian genomic imprinting. Curr Opin Genet Dev 2004; 14: 188–195.

    Article  CAS  Google Scholar 

  21. Lopes S, Lewis A, Hajkova P, Dean W, Oswald J, Forne T et al. Epigenetic modifications in an imprinting cluster are controlled by a hierarchy of DMRs suggesting long-range chromatin interactions. Hum Mol Genet 2003; 12: 295–305.

    Article  CAS  Google Scholar 

  22. Kobayashi H, Suda C, Abe T, Kohara Y, Ikemura T, Sasaki H . Bisulfite sequencing and dinucleotide content analysis of 15 imprinted mouse differentially methylated regions (DMRs): paternally methylated DMRs contain less CpGs than maternally methylated DMRs. Cytogenet Genome Res 2006; 113: 130–137.

    Article  CAS  Google Scholar 

  23. Mager J, Montgomery ND, de Villena FP-M, Magnuson T . Genome imprinting regulated by the mouse Polycomb group protein Eed. Nat Genet 2003; 33: 502–507.

    Article  CAS  Google Scholar 

  24. Fournier C, Goto Y, Ballestar E, Delaval K, Hever AM, Esteller M et al. Allele-specific histone lysine methylation marks regulatory regions at imprinted mouse genes. EMBO J 2002; 21: 6560–6570.

    Article  CAS  Google Scholar 

  25. O'Neill LP, VerMilyea MD, Turner BM . Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nat Genet 2006; 38: 835–841.

    Article  CAS  Google Scholar 

  26. Carr IM, Valleley EMA, Cordery SF, Markham AF, Bonthron DT . Sequence analysis and editing for bisulphite genomic sequencing projects. Nucl Acids Res 2007; 35: e79.

    Article  Google Scholar 

  27. Feldman N, Gerson A, Fang J, Li E, Zhang Y, Shinkai Y et al. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat Cell Biol 2006; 8: 188–194.

    Article  CAS  Google Scholar 

  28. Margueron R, Trojer P, Reinberg D . The key to development: interpreting the histone code? Curr Opin Genet Dev 2005; 15: 163–176.

    Article  CAS  Google Scholar 

  29. Kono T, Obata Y, Wu Q, Niwa K, Ono Y, Yamamoto Y et al. Birth of parthenogenetic mice that can develop to adulthood. Nature 2004; 428: 860–864.

    Article  CAS  Google Scholar 

  30. Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W et al. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 2002; 117: 15–23.

    Article  CAS  Google Scholar 

  31. Pant V, Mariano P, Kanduri C, Mattsson A, Lobanenkov V, Heuchel R et al. The nucleotides responsible for the direct physical contact between the chromatin insulator protein CTCF and the H19 imprinting control region manifest parent of origin-specific long-distance insulation and methylation-free domains. Genes Dev 2003; 17: 586–590.

    Article  CAS  Google Scholar 

  32. Yoon B, Herman H, Hu B, Park YJ, Lindroth A, Bell A et al. Rasgrf1 imprinting is regulated by a CTCF-dependent methylation-sensitive enhancer blocker. Mol Cell Biol 2005; 25: 11184–11190.

    Article  CAS  Google Scholar 

  33. Shovlin TC, Durcova-Hills G, Surani A, McLaren A . Heterogeneity in imprinted methylation patterns of pluripotent embryonic germ cells derived from pre-migratory mouse germ cells. Dev Biol 2008; 313: 674–681.

    Article  CAS  Google Scholar 

  34. Zhu T-N, He H-J, Kole S, D′Souza T, Agarwal R, Morin PJ et al. Filamin A-mediated down-regulation of the exchange factor Ras-GRF1 correlates with decreased matrix metalloproteinase-9 expression in human melanoma cells. J Biol Chem 2007; 282: 14816–14826.

    Article  CAS  Google Scholar 

  35. Lefebvre L, Viville S, Barton SC, Ishino F, Keverne EB, Surani MA . Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest. Nat Genet 1998; 20: 163–169.

    Article  CAS  Google Scholar 

  36. Chen T, Ueda Y, Dodge JE, Wang Z, Li E . Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol Cell Biol 2003; 23: 5594–5605.

    Article  CAS  Google Scholar 

  37. Bourc'his D, Xu G-L, Lin C-S, Bollman B, Bestor TH . Dnmt3 L and the establishment of maternal genomic imprints. Science 2001; 294: 2536–2539.

    Article  CAS  Google Scholar 

  38. Durcova-Hills G, Tang F, Doody G, Tooze R, Surani MA . Reprogramming primordial germ cells into pluripotent stem cells. PLoS ONE 2008; 3: e3531.

    Article  Google Scholar 

  39. Eggenschwiler J, Ludwig T, Fisher P, Leighton PA, Tilghman SM, Efstratiadis A . Mouse mutant embryos overexpressing IGF-II exhibit phenotypic features of the Beckwith-Wiedemann and Simpson-Golabi-Behmel syndromes. Genes Dev 1997; 11: 3128–3142.

    Article  CAS  Google Scholar 

  40. Hao Y, Crenshaw T, Moulton T, Newcomb E, Tycko B . Tumour-suppressor activity of H19 RNA. Nature 1993; 365: 764–767.

    Article  CAS  Google Scholar 

  41. Ludwig T, Eggenschwiler J, Fisher P, D'Ercole AJ, Davenport ML, Efstratiadis A . Mouse mutants lacking the type 2 IGF receptor (IGF2R) are rescued from perinatal lethality inIgf2 and Igf1r null backgrounds. Dev Biol 1996; 177: 517–535.

    Article  CAS  Google Scholar 

  42. Font de Mora J, Esteban LM, Burks DJ, Nunez A, Garces C, Garcia-Barrado MJ et al. Ras-GRF1 signaling is required for normal beta-cell development and glucose homeostasis. EMBO J 2003; 22: 3039–3049.

    Article  CAS  Google Scholar 

  43. Scandura JM, Boccuni P, Massague J, Nimer SD . Transforming growth factor β-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation. Proc Natl Acad Sci USA 2004; 101: 15231–15236.

    Article  CAS  Google Scholar 

  44. Umemoto T, Yamato M, Nishida K, Yang J, Tano Y, Okano T . p57Kip2 is expressed in quiescent mouse bone marrow side population cells. Biochem Biophys Res Commun 2005; 337: 14–21.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Chris Worth, Rui Liu and Izabela Klich for technical support; and Dr Hal Broxmeyer, Dr Jan Nolta, Dr Miodrag Stojkovic and Dr Mervin Yoder for critical comments. This work was supported by NIH P20RR018733 from the National Center for Research Resources to MK and by NIH R01 CA106281-01, NIH R01 DK074720 and Stella and Henry Endowment to MZR.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Z Ratajczak or M Kucia.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, D., Zuba-Surma, E., Wu, W. et al. Novel epigenetic mechanisms that control pluripotency and quiescence of adult bone marrow-derived Oct4+ very small embryonic-like stem cells. Leukemia 23, 2042–2051 (2009). https://doi.org/10.1038/leu.2009.153

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.153

Keywords

This article is cited by

Search

Quick links