Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Malignant Tregs express low molecular splice forms of FOXP3 in Sézary syndrome

Abstract

Sézary syndrome (SS) is an aggressive variant of cutaneous T-cell lymphoma. During disease progression, immunodeficiency develops; however, the underlying molecular and cellular mechanisms are not fully understood. Here, we study the regulatory T cell (Treg) function and the expression of FOXP3 in SS. We demonstrate that malignant T cells in 8 of 15 patients stain positive with an anti-FOXP3 antibody. Western blotting analysis shows expression of two low molecular splice forms of FOXP3, but not of wild-type (wt) FOXP3. The malignant T cells produce interleukin-10 and TGF-β and suppress the growth of non-malignant T cells. The Treg phenotype and the production of suppressive cytokines are driven by aberrant activation of Jak3 independent of the FOXP3 splice forms. In contrast to wt FOXP3, the low molecular splice forms of FOXP3 have no inhibitory effect on nuclear factor-κB (NF-κB) activity in reporter assays which is in keeping with a constitutive NF-κB activity in the malignant T cells. In conclusion, we show that the malignant T cells express low molecular splice forms of FOXP3 and function as Tregs. Furthermore, we provide evidence that FOXP3 splice forms are functionally different from wt FOXP3 and not involved in the execution of the suppressive function. Thus, this is the first description of FOXP3 splice forms in human disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Berger CL, Mariwalla K, Girardi M, Edelson RL . Advances in understanding the immunobiology and immunotherapy of cutaneous T-cell lymphoma. Adv Dermatol 2004; 20: 217–235.

    PubMed  Google Scholar 

  2. Dummer R . Future perspectives in the treatment of cutaneous T-cell lymphoma (CTCL). Semin Oncol 2006; 33: S33–S36.

    Article  CAS  PubMed  Google Scholar 

  3. Willemze R, Jaffe ES, Burg G, Cerroni L, Berti E, Swerdlow SH et al. WHO-EORTC classification for cutaneous lymphomas. Blood 2005; 105: 3768–3785.

    Article  CAS  PubMed  Google Scholar 

  4. Kim EJ, Hess S, Richardson SK, Newton S, Showe LC, Benoit BM et al. Immunopathogenesis and therapy of cutaneous T cell lymphoma. J Clin Invest 2005; 115: 798–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bagot M, Boumsell L, Bensussan A . Immunopathogenesis of cutaneous T-cell lymphomas. Hematol Oncol Clin North Am 2003; 17: 1313–1317, vii.

    Article  PubMed  Google Scholar 

  6. Bagot M, Nikolova M, Schirm-Chabanette F, Wechsler J, Boumsell L, Bensussan A . Crosstalk between tumor T lymphocytes and reactive T lymphocytes in cutaneous T cell lymphomas. Ann N Y Acad Sci 2001; 941: 31–38.

    Article  CAS  PubMed  Google Scholar 

  7. Lee BN, Duvic M, Tang CK, Bueso-Ramos C, Estrov Z, Reuben JM . Dysregulated synthesis of intracellular type 1 and type 2 cytokines by T cells of patients with cutaneous T-cell lymphoma. Clin Diagn Lab Immunol 1999; 6: 79–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Vowels BR, Lessin SR, Cassin M, Jaworsky C, Benoit B, Wolfe JT et al. Th2 cytokine mRNA expression in skin in cutaneous T-cell lymphoma. J Invest Dermatol 1994; 103: 669–673.

    Article  CAS  PubMed  Google Scholar 

  9. Linnemann T, Tumenjargal S, Gellrich S, Wiesmuller K, Kaltoft K, Sterry W et al. Mimotopes for tumor-specific T lymphocytes in human cancer determined with combinatorial peptide libraries. Eur J Immunol 2001; 31: 156–165.

    Article  CAS  PubMed  Google Scholar 

  10. Krejsgaard T, Vetter-Kauczok CS, Woetmann A, Lovato P, Labuda T, Eriksen KW et al. Jak3- and JNK-dependent vascular endothelial growth factor expression in cutaneous T-cell lymphoma. Leukemia 2006; 20: 1759–1766.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Q, Nowak I, Vonderheid EC, Rook AH, Kadin ME, Nowell PC et al. Activation of Jak/STAT proteins involved in signal transduction pathway mediated by receptor for interleukin 2 in malignant T lymphocytes derived from cutaneous anaplastic large T-cell lymphoma and Sezary syndrome. Proc Natl Acad Sci USA 1996; 93: 9148–9153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nielsen M, Kaltoft K, Nordahl M, Ropke C, Geisler C, Mustelin T et al. Constitutive activation of a slowly migrating isoform of Stat3 in mycosis fungoides: tyrphostin AG490 inhibits Stat3 activation and growth of mycosis fungoides tumor cell lines. Proc Natl Acad Sci USA 1997; 94: 6764–6769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brender C, Nielsen M, Kaltoft K, Mikkelsen G, Zhang Q, Wasik M et al. STAT3-mediated constitutive expression of SOCS-3 in cutaneous T-cell lymphoma. Blood 2001; 97: 1056–1062.

    Article  CAS  PubMed  Google Scholar 

  14. Krishnadasan R, Bifulco C, Kim J, Rodov S, Zieske AW, Vanasse GJ . Overexpression of SOCS3 is associated with decreased survival in a cohort of patients with de novo follicular lymphoma. Br J Haematol 2006; 135: 72–75.

    Article  PubMed  Google Scholar 

  15. Axelrod PI, Lorber B, Vonderheid EC . Infections complicating mycosis fungoides and Sezary syndrome. JAMA 1992; 267: 1354–1358.

    Article  CAS  PubMed  Google Scholar 

  16. Berger CL, Tigelaar R, Cohen J, Mariwalla K, Trinh J, Wang N et al. Cutaneous T-cell lymphoma: malignant proliferation of T-regulatory cells. Blood 2005; 105: 1640–1647.

    Article  CAS  PubMed  Google Scholar 

  17. Klemke CD, Fritzsching B, Franz B, Kleinmann EV, Oberle N, Poenitz N et al. Paucity of FOXP3+ cells in skin and peripheral blood distinguishes Sezary syndrome from other cutaneous T-cell lymphomas. Leukemia 2006; 20: 1123–1129.

    Article  CAS  PubMed  Google Scholar 

  18. Tiemessen MM, Mitchell TJ, Hendry L, Whittaker SJ, Taams LS, John S . Lack of suppressive CD4+CD25+FOXP3+ T cells in advanced stages of primary cutaneous T-cell lymphoma. J Invest Dermatol 2006; 126: 2217–2223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gjerdrum LM, Woetmann A, Odum N, Burton CM, Rossen K, Skovgaard GL et al. FOXP3+ regulatory T cells in cutaneous T-cell lymphomas: association with disease stage and survival. Leukemia 2007; 21: 2512–2518.

    Article  CAS  PubMed  Google Scholar 

  20. Campbell DJ, Ziegler SF . FOXP3 modifies the phenotypic and functional properties of regulatory T cells. Nat Rev Immunol 2007; 7: 305–310.

    Article  CAS  PubMed  Google Scholar 

  21. Allan SE, Passerini L, Bacchetta R, Crellin N, Dai M, Orban PC et al. The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs. J Clin Invest 2005; 115: 3276–3284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Smith EL, Finney HM, Nesbitt AM, Ramsdell F, Robinson MK . Splice variants of human FOXP3 are functional inhibitors of human CD4+ T-cell activation. Immunology 2006; 119: 203–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lopes JE, Torgerson TR, Schubert LA, Anover SD, Ocheltree EL, Ochs HD et al. Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor. J Immunol 2006; 177: 3133–3142.

    Article  CAS  PubMed  Google Scholar 

  24. Bettelli E, Dastrange M, Oukka M . Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc Natl Acad Sci USA 2005; 102: 5138–5143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Du J, Huang C, Zhou B, Ziegler SF . Isoform-specific inhibition of ROR alpha-mediated transcriptional activation by human FOXP3. J Immunol 2008; 180: 4785–4792.

    Article  CAS  PubMed  Google Scholar 

  26. Kaltoft K, Bisballe S, Rasmussen HF, Thestrup-Pedersen K, Thomsen K, Sterry W . A continuous T-cell line from a patient with Sezary syndrome. Arch Dermatol Res 1987; 279: 293–298.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Q, Raghunath PN, Vonderheid E, Odum N, Wasik MA . Lack of phosphotyrosine phosphatase SHP-1 expression in malignant T-cell lymphoma cells results from methylation of the SHP-1 promoter. Am J Pathol 2000; 157: 1137–1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaltoft K, Bisballe S, Dyrberg T, Boel E, Rasmussen PB, Thestrup-Pedersen K . Establishment of two continuous T-cell strains from a single plaque of a patient with mycosis fungoides. In Vitro Cell Dev Biol 1992; 28A: 161–167.

    Article  CAS  PubMed  Google Scholar 

  29. Kaltoft K, Hansen BH, Pedersen CB, Pedersen S, Thestrup-Pedersen K . Common clonal chromosome aberrations in cytokine-dependent continuous human T-lymphocyte cell lines. Cancer Genet Cytogenet 1995; 85: 68–71.

    Article  CAS  PubMed  Google Scholar 

  30. Kaltoft K, Hansen BH, Thestrup-Pedersen K . Cytogenetic findings in cell lines from cutaneous T-cell lymphoma. Dermatol Clin 1994; 12: 295–304.

    Article  CAS  PubMed  Google Scholar 

  31. Geisler C, Scholler J, Wahi MA, Rubin B, Weiss A . Association of the human CD3-zeta chain with the alpha beta-T cell receptor/CD3 complex. Clues from a T cell variant with a mutated T cell receptor-alpha chain. J Immunol 1990; 145: 1761–1767.

    CAS  PubMed  Google Scholar 

  32. Siegel JP, Mostowski HS . A bioassay for the measurement of human interleukin-4. J Immunol Methods 1990; 132: 287–295.

    Article  CAS  PubMed  Google Scholar 

  33. Von Willebrand M, Jascur T, Bonnefoy-Berard N, Yano H, Altman A, Matsuda Y et al. Inhibition of phosphatidylinositol 3-kinase blocks T cell antigen receptor/CD3-induced activation of the mitogen-activated kinase Erk2. Eur J Biochem 1996; 235: 828–835.

    Article  CAS  PubMed  Google Scholar 

  34. Sommer VH, Clemmensen OJ, Nielsen O, Wasik M, Lovato P, Brender C et al. In vivo activation of STAT3 in cutaneous T-cell lymphoma. Evidence for an antiapoptotic function of STAT3. Leukemia 2004; 18: 1288–1295.

    Article  CAS  PubMed  Google Scholar 

  35. Woetmann A, Lovato P, Eriksen KW, Krejsgaard T, Labuda T, Zhang Q et al. Nonmalignant T cells stimulate growth of T-cell lymphoma cells in the presence of bacterial toxins. Blood 2007; 109: 3325–3332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang Q, Wang HY, Woetmann A, Raghunath PN, Odum N, Wasik MA . STAT3 induces transcription of the DNA methyltransferase 1 gene (DNMT1) in malignant T lymphocytes. Blood 2006; 108: 1058–1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eriksen KW, Kaltoft K, Mikkelsen G, Nielsen M, Zhang Q, Geisler C et al. Constitutive STAT3-activation in Sezary syndrome: tyrphostin AG490 inhibits STAT3-activation, interleukin-2 receptor expression and growth of leukemic Sezary cells. Leukemia 2001; 15: 787–793.

    Article  CAS  PubMed  Google Scholar 

  38. Yao Z, Kanno Y, Kerenyi M, Stephens G, Durant L, Watford WT et al. Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 2007; 109: 4368–4375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441: 235–238.

    Article  CAS  PubMed  Google Scholar 

  40. Echchakir H, Bagot M, Dorothee G, Martinvalet D, Le Gouvello S, Boumsell L et al. Cutaneous T cell lymphoma reactive CD4+ cytotoxic T lymphocyte clones display a Th1 cytokine profile and use a fas-independent pathway for specific tumor cell lysis. J Invest Dermatol 2000; 115: 74–80.

    Article  CAS  PubMed  Google Scholar 

  41. Saed G, Fivenson DP, Naidu Y, Nickoloff BJ . Mycosis fungoides exhibits a Th1-type cell-mediated cytokine profile whereas Sezary syndrome expresses a Th2-type profile. J Invest Dermatol 1994; 103: 29–33.

    Article  CAS  PubMed  Google Scholar 

  42. Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 2001; 182: 18–32.

    Article  CAS  PubMed  Google Scholar 

  43. Kubach J, Lutter P, Bopp T, Stoll S, Becker C, Huter E et al. Human CD4+CD25+ regulatory T cells: proteome analysis identifies galectin-10 as a novel marker essential for their anergy and suppressive function. Blood 2007; 110: 1550–1558.

    Article  CAS  PubMed  Google Scholar 

  44. Paust S, Lu L, McCarty N, Cantor H . Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. Proc Natl Acad Sci USA 2004; 101: 10398–10403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sors A, Jean-Louis F, Pellet C, Laroche L, Dubertret L, Courtois G et al. Down-regulating constitutive activation of the NF-kappaB canonical pathway overcomes the resistance of cutaneous T-cell lymphoma to apoptosis. Blood 2006; 107: 2354–2363.

    Article  CAS  PubMed  Google Scholar 

  46. Tobe M, Isobe Y, Tomizawa H, Nagasaki T, Takahashi H, Fukazawa T et al. Discovery of quinazolines as a novel structural class of potent inhibitors of NF-kappa B activation. Bioorg Med Chem 2003; 11: 383–391.

    Article  CAS  PubMed  Google Scholar 

  47. Choi BM, Pae HO, Jeong YR, Kim YM, Chung HT . Critical role of heme oxygenase-1 in Foxp3-mediated immune suppression. Biochem Biophys Res Commun 2005; 327: 1066–1071.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from The University of Copenhagen, The Scientific Faculty, The Danish Research Councils, The Foundation of 17-12-1981, The Novo Nordic Foundation, The Danish Cancer Society, Neye Fonden, The Lundbeck Foundation, The Leo Pharma Foundation, and The National Cancer Institute-CA89194 (MA Wasik). We thank Keld Kaltoft (Århus University and CellCure Århus, Denmark) for the generous gift of MF, MySi and SeAx cell lines. Approval was obtained from the University of Copenhagen for these studies. Informed consent was provided according to the Declaration of Helsinki Principles. The project part concerning the establishment and study of CTCL cell lines by Dr Keld Kaltoft has been approved by ‘Den videnskabsetiske Kommite i Århus Amt’ (The science-ethical committee in Århus County).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Woetmann.

Additional information

Conflict of interest

The authors declare no competing financial interests.

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krejsgaard, T., Gjerdrum, L., Ralfkiaer, E. et al. Malignant Tregs express low molecular splice forms of FOXP3 in Sézary syndrome. Leukemia 22, 2230–2239 (2008). https://doi.org/10.1038/leu.2008.224

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.224

Keywords

This article is cited by

Search

Quick links