Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

CRISPR/Cas9: molecular tool for gene therapy to target genome and epigenome in the treatment of lung cancer

Abstract

Although varied drugs and therapies have been developed for lung cancer treatment, in the past 5 years overall survival rates have not improved much. It has also been reported that lung cancer is diagnosed in most of the patients when it is already in the advanced stages with heterogeneous tumors where single therapy is mostly ineffective. A combination of therapies are being administered and specific genes in specific tissues are targeted while protecting normal cell, but most of the therapies face drawbacks for the development of resistance against them and tumor progression. Therefore, therapeutic implications for various therapies need to be complemented by divergent strategies. This review frames utilization of CRISPR/Cas9 for molecular targeted gene therapy leading to long-term repression and activation or inhibition of molecular targets linked to lung cancer, avoiding the cycles of therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A . Cancer statistics, 2015. CA Cancer J Clin 2015; 65: 5–29.

    Article  Google Scholar 

  2. Tang M, Xu W, Wang Q, Xiao W, Xu R . Potential of DNMT and its epigenetic regulation for lung cancer therapy. Curr Genom 2009; 10: 336.

    Article  CAS  Google Scholar 

  3. Xu XL, Wu LC, Du F, Davis A, Peyton M, Tomizawa Y et al. Inactivation of human SRBC, located within the 11p15. 5-p15. 4 tumor suppressor region, in breast and lung cancers. Cancer Res 2001; 61: 7943–7949.

    CAS  PubMed  Google Scholar 

  4. Pekarsky Y, Zanesi N, Palamarchuk A, Huebner K, Croce CM . FHIT: from gene discovery to cancer treatment and prevention. Lancet Oncol 2002; 3: 748–754.

    Article  CAS  Google Scholar 

  5. Kremer M, Quintanilla-Martinez L, Fuchs M, Gamboa-Dominguez A, Haye S, Kalthoff H et al. Influence of tumor-associated E-cadherin mutations on tumorigenicity and metastasis. Carcinogenesis 2003; 24: 1879–1886.

    Article  CAS  Google Scholar 

  6. Sloan EK, Stanley KL, Anderson RL . Caveolin-1 inhibits breast cancer growth and metastasis. Oncogene 2004; 23: 7893–7897.

    Article  CAS  Google Scholar 

  7. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008; 455: 1069–1075.

    Article  CAS  Google Scholar 

  8. Tellez CS, Grimes MJ, Picchi MA, Liu Y, March TH, Reed MD et al. SGI‐110 and entinostat therapy reduces lung tumor burden and reprograms the epigenome. Int Jo Cancer 2014; 135: 2223–2231.

    Article  CAS  Google Scholar 

  9. Berdasco M, Esteller M . Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 2010; 19: 698–711.

    Article  CAS  Google Scholar 

  10. Malecová B, Morris KV . Transcriptional gene silencing mediated by non-coding RNAs. Curr Opin Mol Ther 2010; 12: 214.

    PubMed  PubMed Central  Google Scholar 

  11. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 2007; 104: 15805–15810.

    Article  CAS  Google Scholar 

  12. Han Z, Liu L, Liu Y, Li S . Sirtuin SIRT6 suppresses cell proliferation through inhibition of Twist1 expression in non-small cell lung cancer. Int J Clin Exp Pathol 2014; 7: 4774.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007; 315: 1709–1712.

    Article  CAS  Google Scholar 

  14. Garneau JE, Dupuis M-È, Villion M, Romero DA, Barrangou R, Boyaval P et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010; 468: 67–71.

    Article  CAS  Google Scholar 

  15. Chylinski K, Le Rhun A, Charpentier E . The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol 2013; 10: 726–737.

    Article  CAS  Google Scholar 

  16. Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA . DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 2014; 507: 62–67.

    Article  CAS  Google Scholar 

  17. Cencic R, Miura H, Malina A, Robert F, Ethier S, Schmeing TM et al. Protospacer adjacent motif (PAM)-distal sequences engage CRISPR Cas9 DNA target cleavage. PLoS One 2014; 9: e109213.

    Article  Google Scholar 

  18. Anders C, Niewoehner O, Duerst A, Jinek M . Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 2014; 513: 569–573.

    Article  CAS  Google Scholar 

  19. Haft DH, Selengut J, Mongodin EF, Nelson KE . A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 2005; 1: e60.

    Article  Google Scholar 

  20. Fenner MW . CRISPR—a widespread system that provides acquired resistance against phages in bacteria and archaea. Lawrence Berkeley Natl Lab 2007; 6: 181–186.

    Google Scholar 

  21. Barrangou R, Horvath P . CRISPR: new horizons in phage resistance and strain identification. Annu Rev Food Sci Technol 2012; 3: 143–162.

    Article  CAS  Google Scholar 

  22. Gasiunas G, Barrangou R, Horvath P, Siksnys V . Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 2012; 109: E2579–E2586.

    Article  CAS  Google Scholar 

  23. Sorek R, Kunin V, Hugenholtz P . CRISPR—a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 2008; 6: 181–186.

    Article  CAS  Google Scholar 

  24. Fonfara I, Le Rhun A, Chylinski K, Makarova KS, Lécrivain A-L, Bzdrenga J et al. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res 2014; 42: 2577–2590.

    Article  CAS  Google Scholar 

  25. Hou Z, Zhang Y, Propson NE, Howden SE, Chu L-F, Sontheimer EJ et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci USA 2013; 110: 15644–15649.

    Article  CAS  Google Scholar 

  26. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E . A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337: 816–821.

    Article  CAS  Google Scholar 

  27. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA . RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 2013; 31: 233–239.

    Article  CAS  Google Scholar 

  28. Cradick TJ, Fine EJ, Antico CJ, Bao G . CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res 2013; 41: 9584–9592.

    Article  CAS  Google Scholar 

  29. Sinkunas T, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V . Cas3 is a single‐stranded DNA nuclease and ATP‐dependent helicase in the CRISPR/Cas immune system. EMBO J 2011; 30: 1335–1342.

    Article  CAS  Google Scholar 

  30. Fineran PC, Charpentier E . Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information. Virology 2012; 434: 202–209.

    Article  CAS  Google Scholar 

  31. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013; 152: 1173–1183.

    Article  CAS  Google Scholar 

  32. Westra ER, Semenova E, Datsenko KA, Jackson RN, Wiedenheft B, Severinov K et al. Type IE CRISPR-cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition. PLoS Genet 2013; 9: e1003742.

    Article  CAS  Google Scholar 

  33. Cho SW, Kim S, Kim JM, Kim J-S . Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 2013; 31: 230–232.

    Article  CAS  Google Scholar 

  34. Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA, Musunuru K . Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 2013; 12: 393.

    Article  CAS  Google Scholar 

  35. Wu Y, Liang D, Wang Y, Bai M, Tang W, Bao S et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 2013; 13: 659–662.

    Article  CAS  Google Scholar 

  36. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 2013; 153: 910–918.

    Article  CAS  Google Scholar 

  37. Kabadi AM, Ousterout DG, Hilton IB, Gersbach CA . Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Res 2014; 42: e147.

    Article  Google Scholar 

  38. Yoshimi K, Kaneko T, Voigt B, Mashimo T . Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR–Cas platform. Nat Commun 2014; 5: 4240.

    Article  CAS  Google Scholar 

  39. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013; 154: 442–451.

    Article  CAS  Google Scholar 

  40. Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S . Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 2013; 31: 691–693.

    Article  CAS  Google Scholar 

  41. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 2013; 31: 686–688.

    Article  CAS  Google Scholar 

  42. Sander JD, Joung JK . CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 2014; 32: 347–355.

    Article  CAS  Google Scholar 

  43. Ran F, Hsu PD, Lin C-Y, Gootenberg JS, Konermann S, Trevino AE et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013; 154: 1380–1389.

    Article  CAS  Google Scholar 

  44. Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 2013; 10: 973–976.

    Article  CAS  Google Scholar 

  45. Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA . Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 2013; 41: 7429–7437.

    Article  CAS  Google Scholar 

  46. Lawhorn IE, Ferreira JP, Wang CL . Evaluation of sgRNA target sites for CRISPR-mediated repression of TP53. PLoS One 2014; 9: e113232.

    Article  Google Scholar 

  47. Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 2015; 33: 510–517.

    Article  CAS  Google Scholar 

  48. Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res 2013; 23: 1163–1171.

    Article  CAS  Google Scholar 

  49. Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 2004; 428: 431–437.

    Article  CAS  Google Scholar 

  50. Luo B, Cheung HW, Subramanian A, Sharifnia T, Okamoto M, Yang X et al. Highly parallel identification of essential genes in cancer cells. Proc Natl Acad Sci USA 2008; 105: 20380–20385.

    Article  CAS  Google Scholar 

  51. Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 2006; 12: 1179–1187.

    Article  CAS  Google Scholar 

  52. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 2013; 31: 833–838.

    Article  CAS  Google Scholar 

  53. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014; 343: 84–87.

    Article  CAS  Google Scholar 

  54. Gersbach CA, Perez-Pinera P . Activating human genes with zinc finger proteins, transcription activator-like effectors and CRISPR/Cas9 for gene therapy and regenerative medicine. Expert Opin Ther Targets 2014; 18: 835–839.

    Article  CAS  Google Scholar 

  55. Zhao Y, Dai Z, Liang Y, Yin M, Ma K, He M et al. Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system. Sci Rep 2014; 4: 3943.

    Article  Google Scholar 

  56. Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 2014; 514: 380–384.

    Article  CAS  Google Scholar 

  57. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 2014; 159: 440–455.

    Article  CAS  Google Scholar 

  58. Zhou Q, Derti A, Ruddy D, Rakiec D, Kao I, Lira M et al. A chemical genetics approach for the functional assessment of novel cancer genes. Cancer Res 2015; 75: 1949–1958.

    Article  CAS  Google Scholar 

  59. Li J, Shou J, Guo Y, Tang Y, Wu Y, Jia Z et al. Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9. J Mol Cell Biol 2015; 7: 284–298.

    Article  CAS  Google Scholar 

  60. Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA, Han Y-C et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 2014; 516: 423–427.

    Article  CAS  Google Scholar 

  61. Liu Y, Zeng Y, Liu L, Zhuang C, Fu X, Huang W et al. Synthesizing AND gate genetic circuits based on CRISPR-Cas9 for identification of bladder cancer cells. Nat Commun 2014; 5: 5393.

    Article  CAS  Google Scholar 

  62. Kasap C, Elemento O, Kapoor TM . DrugTargetSeqR: a genomics-and CRISPR-Cas9–based method to analyze drug targets. Nat Chem Biol 2014; 10: 626–628.

    Article  CAS  Google Scholar 

  63. Neggers JE, Vercruysse T, Jacquemyn M, Vanstreels E, Baloglu E, Shacham S et al. Identifying drug-target selectivity of small-molecule CRM1/XPO1 inhibitors by CRISPR/Cas9 genome editing. Chem Biol 2015; 22: 107–116.

    Article  CAS  Google Scholar 

  64. Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB, Vakoc CR . Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol 2015; 33: 661–667.

    Article  CAS  Google Scholar 

  65. Zhen S, Hua L, Takahashi Y, Narita S, Liu Y-H, Li Y . In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochem Biophys Res Commun 2014; 450: 1422–1426.

    Article  CAS  Google Scholar 

  66. Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004; 304: 1497–1500.

    Article  CAS  Google Scholar 

  67. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non–small-cell lung cancer to gefitinib. N Engl J Med 2004; 350: 2129–2139.

    Article  CAS  Google Scholar 

  68. McDermott U, Iafrate AJ, Gray NS, Shioda T, Classon M, Maheswaran S et al. Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer Res 2008; 68: 3389–3395.

    Article  CAS  Google Scholar 

  69. Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 1994; 263: 1281–1284.

    Article  CAS  Google Scholar 

  70. Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T et al. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med 2010; 363: 1734–1739.

    Article  CAS  Google Scholar 

  71. Roberts P, Der C . Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007; 26: 3291–3310.

    Article  CAS  Google Scholar 

  72. Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 2008; 14: 1351–1356.

    Article  CAS  Google Scholar 

  73. Ju YS, Lee W-C, Shin J-Y, Lee S, Bleazard T, Won J-K et al. A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res 2012; 22: 436–445.

    Article  CAS  Google Scholar 

  74. Birchmeier C, Birchmeier W, Gherardi E, Woude GFV . Met, metastasis, motility and more. Nat Rev Mol Cell Biol 2003; 4: 915–925.

    Article  CAS  Google Scholar 

  75. Ma PC, Jagadeeswaran R, Jagadeesh S, Tretiakova MS, Nallasura V, Fox EA et al. Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non–small cell lung cancer. Cancer Res 2005; 65: 1479–1488.

    Article  CAS  Google Scholar 

  76. Belinsky SA, Klinge DM, Stidley CA, Issa J-P, Herman JG, March TH et al. Inhibition of DNA methylation and histone deacetylation prevents murine lung cancer. Cancer Res 2003; 63: 7089–7093.

    CAS  PubMed  Google Scholar 

  77. Chu B, Karpenko M, Liu Z, Aimiuwu J, Villalona-Calero M, Chan K et al. Phase I study of 5-aza-2′-deoxycytidine in combination with valproic acid in non-small-cell lung cancer. Cancer Chemother Pharmacol 2013; 71: 115–121.

    Article  CAS  Google Scholar 

  78. Lin R-K, Wang Y-C . A DNA methyltransferase I inhibitor mithramycin A in cancer cells: a pilot study. Bioformosa 2007; 42: 55–62.

    Google Scholar 

  79. Pan M-R, Chang H-C, Chuang L-Y, Hung W-C . The nonsteroidal anti-inflammatory drug NS398 reactivates SPARC expression via promoter demethylation to attenuate invasiveness of lung cancer cells. Exp Biol Med 2008; 233: 456–462.

    Article  CAS  Google Scholar 

  80. Yu X-D, Wang S-Y, Chen GA, Hou C-M, Zhao M, Hong JA et al. Apoptosis induced by depsipeptide FK228 coincides with inhibition of survival signaling in lung cancer cells. Cancer J 2007; 13: 105–113.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Sachdeva.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachdeva, M., Sachdeva, N., Pal, M. et al. CRISPR/Cas9: molecular tool for gene therapy to target genome and epigenome in the treatment of lung cancer. Cancer Gene Ther 22, 509–517 (2015). https://doi.org/10.1038/cgt.2015.54

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2015.54

This article is cited by

Search

Quick links