Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Therapeutic effect of suicide gene-transferred mesenchymal stem cells in a rat model of glioma

Abstract

We evaluated a new therapeutic strategy for malignant glioma, which combines intratumoral inoculation of mesenchymal stem cells (MSCs) expressing cytosine deaminase gene with 5-fluorocytosine (5-FC) administration. For in vitro and in vivo experiments, MSCs were transfected with adenovirus carrying either enhanced green fluorescent protein gene (AdexCAEGFP) or cytosine deaminase gene (AdexCACD), to establish MSC-expressing EGFP (MSC-EGFP) or CD (MSC-CD). Co-culture of 9L glioma cells with MSC-CD in a medium containing 5-FC resulted in a remarkable reduction in 9L cell viability. The migratory ability of MSC-EGFP toward 9L cells was demonstrated by double-chamber assay. For the in vivo study, rats harboring 9L brain tumors were inoculated with MSC-EGFP or MSC-CD. Immunohistochemistry of rat brain tumors inoculated with MSC-EGFP showed intratumoral distribution of MSC-EGFP. Survival analysis of rats bearing 9L gliomas treated with intratumoral MSC-CD and intraperitoneal 5-FC resulted in significant prolongation of survival compared with control animals. In conclusion, molecular therapy combining suicide gene therapy and MSCs as a targeting vehicle represents a potential new therapeutic approach for malignant glioma, both with respect to the antitumor potential of this system and its neuroprotective effect on normal brain tissue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Davis FG, McCarthy BJ, Berger MS . Centralized databases available for describing primary brain tumor incidence, survival, and treatment: Central Brain Tumor Registry of the United States; Surveillance, Epidemiology, and End Results; and National Cancer Data Base. Neuro Oncol 1999; 1: 205–211.

    Article  CAS  Google Scholar 

  2. Kim SM, Lim JY, Park SI, Jeong CH, Oh JH, Jeong M et al. Gene therapy using TRAIL-secreting human umbilical cord blood-derived mesenchymal stem cells against intracranial glioma. Cancer Res 2008; 68: 9614–9623.

    Article  CAS  Google Scholar 

  3. Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 2000; 97: 12846–12851.

    Article  CAS  Google Scholar 

  4. Barresi V, Belluardo N, Sipione S, Mudo G, Cattaneo E, Condorelli DF . Transplantation of prodrug-converting neural progenitor cells for brain tumor therapy. Cancer Gene Ther 2003; 10: 396–402.

    Article  CAS  Google Scholar 

  5. Ehtesham M, Kabos P, Gutierrez MA, Chung NH, Griffith TS, Black KL et al. Induction of glioblastoma apoptosis using neural stem cell-mediated delivery of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res 2002; 62: 7170–7174.

    CAS  PubMed  Google Scholar 

  6. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    Article  CAS  Google Scholar 

  7. Prockop DJ . Stem cell research has only just begun. Science 2001; 293: 211–212.

    Article  CAS  Google Scholar 

  8. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M et al. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther 2005; 11: 96–104.

    Article  CAS  Google Scholar 

  9. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Kobune M, Hirai S et al. BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther 2004; 9: 189–197.

    Article  CAS  Google Scholar 

  10. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005; 65: 3307–3318.

    Article  CAS  Google Scholar 

  11. Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H et al. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 2004; 11: 1155–1164.

    Article  CAS  Google Scholar 

  12. Mullen CA, Kilstrup M, Blaese RM . Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5-fluorocytosine: a negative selection system. Proc Natl Acad Sci USA 1992; 89: 33–37.

    Article  CAS  Google Scholar 

  13. Ichikawa T, Tamiya T, Adachi Y, Ono Y, Matsumoto K, Furuta T et al. In vivo efficacy and toxicity of 5-fluorocytosine/cytosine deaminase gene therapy for malignant gliomas mediated by adenovirus. Cancer Gene Ther 2000; 7: 74–82.

    Article  CAS  Google Scholar 

  14. Kucerova L, Matuskova M, Pastorakova A, Tyciakova S, Jakubikova J, Bohovic R et al. Cytosine deaminase expressing human mesenchymal stem cells mediated tumour regression in melanoma bearing mice. J Gene Med 2008; 10: 1071–1082.

    Article  CAS  Google Scholar 

  15. Park SA, Ryu CH, Kim SM, Lim JY, Park SI, Jeong CH et al. CXCR4-transfected human umbilical cord blood-derived mesenchymal stem cells exhibit enhanced migratory capacity toward gliomas. Int J Oncol 2011; 38: 97–103.

    CAS  PubMed  Google Scholar 

  16. Schichor C, Birnbaum T, Etminan N, Schnell O, Grau S, Miebach S et al. Vascular endothelial growth factor A contributes to glioma-induced migration of human marrow stromal cells (hMSC). Exp Neurol 2006; 199: 301–310.

    Article  CAS  Google Scholar 

  17. Birnbaum T, Roider J, Schankin CJ, Padovan CS, Schichor C, Goldbrunner R et al. Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines. J Neurooncol 2007; 83: 241–247.

    Article  CAS  Google Scholar 

  18. Xu F, Shi J, Yu B, Ni W, Wu X, Gu Z . Chemokines mediate mesenchymal stem cell migration toward gliomas in vitro. Oncol Rep 2010; 23: 1561–1567.

    CAS  PubMed  Google Scholar 

  19. Giese A, Westphal M . Glioma invasion in the central nervous system. Neurosurgery 1996; 39: 235–250; discussion 250–252.

    Article  CAS  Google Scholar 

  20. Friedlander DR, Zagzag D, Shiff B, Cohen H, Allen JC, Kelly PJ et al. Migration of brain tumor cells on extracellular matrix proteins in vitro correlates with tumor type and grade and involves alphaV and beta1 integrins. Cancer Res 1996; 56: 1939–1947.

    CAS  PubMed  Google Scholar 

  21. Onishi M, Ichikawa T, Kurozumi K, Date I . Angiogenesis and invasion in glioma. Brain Tumor Pathol 2011; 28: 13–24.

    Article  CAS  Google Scholar 

  22. Onda T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD . Therapeutic benefits by human mesenchymal stem cells (hMSCs) and Ang-1 gene-modified hMSCs after cerebral ischemia. J Cereb Blood Flow Metab 2008; 28: 329–340.

    Article  CAS  Google Scholar 

  23. Li Y, Chen J, Chen XG, Wang L, Gautam SC, Xu YX et al. Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology 2002; 59: 514–523.

    Article  CAS  Google Scholar 

  24. Kimura S, Yoshino A, Katayama Y, Watanabe T, Fukushima T . Growth control of C6 glioma in vivo by nerve growth factor. J Neurooncol 2002; 59: 199–205.

    Article  Google Scholar 

  25. Chen XC, Wang R, Zhao X, Wei YQ, Hu M, Wang YS et al. Prophylaxis against carcinogenesis in three kinds of unestablished tumor models via IL12-gene-engineered MSCs. Carcinogenesis 2006; 27: 2434–2441.

    Article  CAS  Google Scholar 

  26. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M . Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002; 62: 3603–3608.

    CAS  Google Scholar 

  27. Borden EC, Kim K, Ryan L, Blum RH, Shiraki M, Tormey DC et al. Phase II trials of interferons-alpha and -beta in advanced sarcomas. J Interferon Res 1992; 12: 455–458.

    Article  CAS  Google Scholar 

  28. Mohr A, Lyons M, Deedigan L, Harte T, Shaw G, Howard L et al. Mesenchymal stem cells expressing TRAIL lead to tumour growth inhibition in an experimental lung cancer model. J Cell Mol Med 2008; 12 (6B): 2628–2643.

    Article  CAS  Google Scholar 

  29. Kurozumi K, Hardcastle J, Thakur R, Shroll J, Nowicki M, Otsuki A et al. Oncolytic HSV-1 infection of tumors induces angiogenesis and upregulates CYR61. Mol Ther 2008; 16: 1382–1391.

    Article  CAS  Google Scholar 

  30. Kurozumi K, Hardcastle J, Thakur R, Yang M, Christoforidis G, Fulci G et al. Effect of tumor microenvironment modulation on the efficacy of oncolytic virus therapy. J Natl Cancer Inst 2007; 99: 1768–1781.

    Article  CAS  Google Scholar 

  31. Kambara H, Okano H, Chiocca EA, Saeki Y . An oncolytic HSV-1 mutant expressing ICP34.5 under control of a nestin promoter increases survival of animals even when symptomatic from a brain tumor. Cancer Res 2005; 65: 2832–2839.

    Article  CAS  Google Scholar 

  32. Komarova S, Kawakami Y, Stoff-Khalili MA, Curiel DT, Pereboeva L . Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol Cancer Ther 2006; 5: 755–766.

    Article  CAS  Google Scholar 

  33. Amano S, Li S, Gu C, Gao Y, Koizumi S, Yamamoto S et al. Use of genetically engineered bone marrow-derived mesenchymal stem cells for glioma gene therapy. Int J Oncol 2009; 35: 1265–1270.

    CAS  PubMed  Google Scholar 

  34. Grignet-Debrus C, Calberg-Bacq CM . Potential of Varicella zoster virus thymidine kinase as a suicide gene in breast cancer cells. Gene Ther 1997; 4: 560–569.

    Article  CAS  Google Scholar 

  35. Lee J, Elkahloun AG, Messina SA, Ferrari N, Xi D, Smith CL et al. Cellular and genetic characterization of human adult bone marrow-derived neural stem-like cells: a potential antiglioma cellular vector. Cancer Res 2003; 63: 8877–8889.

    CAS  Google Scholar 

  36. Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC et al. Spontaneous human adult stem cell transformation. Cancer Res 2005; 65: 3035–3039.

    Article  CAS  Google Scholar 

  37. Pike-Overzet K, van der Burg M, Wagemaker G, van Dongen JJ, Staal FJ . New insights and unresolved issues regarding insertional mutagenesis in X-linked SCID gene therapy. Mol Ther 2007; 15: 1910–1916.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H Wakimoto, M Arao and A Ishikawa for their technical assistance. The following medical students also contributed to the animal experiments: T Oka, K Tanaka, H Honda, K Seno and H Okura. This study was supported by grants-in-aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology to TI (No. 19591675), HK (No. 19591676) and KK (No. 20890133; No. 21791364).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Ichikawa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosaka, H., Ichikawa, T., Kurozumi, K. et al. Therapeutic effect of suicide gene-transferred mesenchymal stem cells in a rat model of glioma. Cancer Gene Ther 19, 572–578 (2012). https://doi.org/10.1038/cgt.2012.35

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2012.35

Keywords

This article is cited by

Search

Quick links