Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Understanding wild-type and mutant p53 activities in human cancer: new landmarks on the way to targeted therapies

Abstract

Three decades of p53 research have led to many advances in understanding the basic biology of normal and cancer cells. Nonetheless, the detailed functions of p53 in normal cells, and even more so in cancer cells, remain obscure. A major breakthrough is the realization that mutant p53 has a life of its own: it contributes to cancer not only through loss of activity, but also through gain of specific ‘mutant functions’. This new focus on mutant p53 is the rationale behind the meeting series dedicated to advances on mutant p53 biology. This review provides an overview of results presented at the Fourth International Workshop on Mutant p53, held in Akko, Israel in March 2009. New roles and functions of p53 relevant for tumor suppressions were presented, including the regulation of microRNAs networks, the modulation of cell–stroma interactions and the induction of senescence. A main focus of the meeting was the rapidly growing body of knowledge on autonomous properties of mutant p53 and on their oncogenic ‘gain of function’ impact. Importantly, the meeting highlighted that, 30 years after p53 discovery, research on mutant p53 is entering the clinical and translational era. Two major steps forward in this respect are a better understanding of the active mechanism of small drugs targeting mutant p53 in tumor cells and an improved definition of the prognostic and predictive value of mutant p53 in human cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B . Definition of a consensus binding site for p53. Nat Genet 1992; 1: 45–49.

    Article  CAS  Google Scholar 

  2. Kitayner M, Rozenberg H, Kessler N, Rabinovich D, Shaulov L, Haran TE et al. Structural basis of DNA recognition by p53 tetramers. Mol Cell 2006; 22: 741–753.

    Article  CAS  Google Scholar 

  3. Jordan JJ, Menendez D, Inga A, Noureddine M, Bell DA, Resnick MA . Noncanonical DNA motifs as transactivation targets by wild type and mutant p53. PLoS Genet 2008; 4: e1000104.

    Article  Google Scholar 

  4. Menendez D, Inga A, Snipe J, Krysiak O, Schonfelder G, Resnick MA . A single-nucleotide polymorphism in a half-binding site creates p53 and estrogen receptor control of vascular endothelial growth factor receptor 1. Mol Cell Biol 2007; 27: 2590–2600.

    Article  CAS  Google Scholar 

  5. Yan J, Menendez D, Yang XP, Resnick MA, Jetten AM . A regulatory loop composed of rap80-HDM2-p53 provides rap80 enhanced p53 degradation by HDM2 in response to DNA damage. J Biol Chem 2009; 284: 19280–19289.

    Article  CAS  Google Scholar 

  6. Bischoff JR, Friedman PN, Marshak DR, Prives C, Beach D . Human p53 is phosphorylated by p60-cdc2 and cyclin B-cdc2. Proc Natl Acad Sci USA 1990; 87: 4766–4770.

    Article  CAS  Google Scholar 

  7. Katayama H, Sasai K, Kawai H, Yuan ZM, Bondaruk J, Suzuki F et al. Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet 2004; 36: 55–62.

    Article  CAS  Google Scholar 

  8. Price BD, Hughes-Davies L, Park SJ . Cdk2 kinase phosphorylates serine 315 of human p53 in vitro. Oncogene 1995; 11: 73–80.

    CAS  PubMed  Google Scholar 

  9. Radhakrishnan SK, Gartel AL . CDK9 phosphorylates p53 on serine residues 33, 315 and 392. Cell Cycle 2006; 5: 519–521.

    Article  CAS  Google Scholar 

  10. Kruse JP, Gu W . Modes of p53 regulation. Cell 2009; 137: 609–622.

    Article  CAS  Google Scholar 

  11. Goldstein I, Rotter V . Mutations in the tetramerization domain of p53: more than just keeping monomers apart. Cell Cycle 2009; 8: 3259–3260.

    Article  CAS  Google Scholar 

  12. Joubel A, Chalkley RJ, Medzihradszky KF, Hondermarck H, Burlingame AL . Identification of new p53 acetylation sites in COS-1 cells. Mol Cell Proteomics 2009; 8: 1167–1173.

    Article  CAS  Google Scholar 

  13. Muscolini M, Montagni E, Caristi S, Nomura T, Kamada R, Di Agostino S et al. Characterization of a new cancer-associated mutant of p53 with a missense mutation (K351N) in the tetramerization domain. Cell Cycle 2009; 8: 3396–3405.

    Article  CAS  Google Scholar 

  14. Mahmoudi S, Henriksson S, Corcoran M, Mendez-Vidal C, Wiman KG, Farnebo M . Wrap53, a natural p53 antisense transcript required for p53 induction upon DNA damage. Mol Cell 2009; 33: 462–471.

    Article  CAS  Google Scholar 

  15. Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 2006; 444: 633–637.

    Article  CAS  Google Scholar 

  16. Halazonetis TD, Gorgoulis VG, Bartek J . An oncogene-induced DNA damage model for cancer development. Science 2008; 319: 1352–1355.

    Article  CAS  Google Scholar 

  17. Kumamoto K, Spillare EA, Fujita K, Horikawa I, Yamashita T, Appella E et al. Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate mir-34a, mir-34b, and mir-34c expression, and induce senescence. Cancer Res 2008; 68: 3193–3203.

    Article  CAS  Google Scholar 

  18. Fujita K, Mondal AM, Horikawa I, Nguyen GH, Kumamoto K, Sohn JJ et al. p53 isoforms Delta133p53 and p53beta are endogenous regulators of replicative cellular senescence. Nat Cell Biol 2009; 11: 1135–1142.

    Article  CAS  Google Scholar 

  19. Han MK, Song EK, Guo Y, Ou X, Mantel C, Broxmeyer HE . SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell 2008; 2: 241–251.

    Article  CAS  Google Scholar 

  20. Lin T, Chao C, Saito S, Mazur SJ, Murphy ME, Appella E et al. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 2005; 7: 165–171.

    Article  CAS  Google Scholar 

  21. Maimets T, Neganova I, Armstrong L, Lako M . Activation of p53 by nutlin leads to rapid differentiation of human embryonic stem cells. Oncogene 2008; 27: 5277–5287.

    Article  CAS  Google Scholar 

  22. Qin H, Yu T, Qing T, Liu Y, Zhao Y, Cai J et al. Regulation of apoptosis and differentiation by p53 in human embryonic stem cells. J Biol Chem 2007; 282: 5842–5852.

    Article  CAS  Google Scholar 

  23. Danovi D, Meulmeester E, Pasini D, Migliorini D, Capra M, Frenk R et al. Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol 2004; 24: 5835–5843.

    Article  CAS  Google Scholar 

  24. Migliorini D, Lazzerini Denchi E, Danovi D, Jochemsen A, Capillo M, Gobbi A et al. Mdm4 (Mdmx) regulates p53-induced growth arrest and neuronal cell death during early embryonic mouse development. Mol Cell Biol 2002; 22: 5527–5538.

    Article  CAS  Google Scholar 

  25. Matijasevic Z, Krzywicka-Racka A, Sluder G, Jones SN . MdmX regulates transformation and chromosomal stability in p53-deficient cells. Cell Cycle 2008; 7: 2967–2973.

    Article  CAS  Google Scholar 

  26. Matijasevic Z, Steinman HA, Hoover K, Jones SN . MdmX promotes bipolar mitosis to suppress transformation and tumorigenesis in p53-deficient cells and mice. Mol Cell Biol 2008; 28: 1265–1273.

    Article  CAS  Google Scholar 

  27. Milyavsky M, Shats I, Erez N, Tang X, Senderovich S, Meerson A et al. Prolonged culture of telomerase-immortalized human fibroblasts leads to a premalignant phenotype. Cancer Res 2003; 63: 7147–7157.

    CAS  PubMed  Google Scholar 

  28. Milyavsky M, Tabach Y, Shats I, Erez N, Cohen Y, Tang X et al. Transcriptional programs following genetic alterations in p53, INK4A, and H-Ras genes along defined stages of malignant transformation. Cancer Res 2005; 65: 4530–4543.

    Article  CAS  Google Scholar 

  29. Lu D, Wolfgang CD, Hai T . Activating transcription factor 3, a stress-inducible gene, suppresses Ras-stimulated tumorigenesis. J Biol Chem 2006; 281: 10473–10481.

    Article  CAS  Google Scholar 

  30. Boiko AD, Porteous S, Razorenova OV, Krivokrysenko VI, Williams BR, Gudkov AV . A systematic search for downstream mediators of tumor suppressor function of p53 reveals a major role of BTG2 in suppression of Ras-induced transformation. Genes Dev 2006; 20: 236–252.

    Article  CAS  Google Scholar 

  31. Buganim Y, Solomon H, Rais Y, Kistner D, Nachmany I, Brait M et al. p53 Regulates the Ras circuit to inhibit the expression of a cancer-related gene signature by various molecular pathways. Cancer Res 2010; 70: 2274–2284.

    Article  CAS  Google Scholar 

  32. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 2008; 6: 2853–2868.

    Article  CAS  Google Scholar 

  33. McMurray HR, Sampson ER, Compitello G, Kinsey C, Newman L, Smith B et al. Synergistic response to oncogenic mutations defines gene class critical to cancer phenotype. Nature 2008; 453: 1112–1116.

    Article  CAS  Google Scholar 

  34. Kalluri R, Zeisberg M . Fibroblasts in cancer. Nat Rev Cancer 2006; 6: 392–401.

    Article  CAS  Google Scholar 

  35. Bar J, Feniger-Barish R, Lukashchuk N, Shaham H, Moskovits N, Goldfinger N et al. Cancer cells suppress p53 in adjacent fibroblasts. Oncogene 2009; 28: 933–936.

    Article  CAS  Google Scholar 

  36. Moskovits N, Kalinkovich A, Bar J, Lapidot T, Oren M . p53 Attenuates cancer cell migration and invasion through repression of SDF-1/CXCL12 expression in stromal fibroblasts. Cancer Res 2006; 66: 10671–10676.

    Article  CAS  Google Scholar 

  37. Hill R, Song Y, Cardiff RD, Dyke TV . Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell 2005; 123: 1001–1011.

    Article  CAS  Google Scholar 

  38. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 2007; 28: 622–629.

    Article  CAS  Google Scholar 

  39. Brosh R, Rotter V . When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 2009; 9: 701–713.

    Article  CAS  Google Scholar 

  40. Weisz L, Damalas A, Liontos M, Karakaidos P, Fontemaggi G, Maor-Aloni R et al. Mutant p53 enhances nuclear factor kappaB activation by tumor necrosis factor alpha in cancer cells. Cancer Res 2007; 67: 2396–2401.

    Article  CAS  Google Scholar 

  41. Scian MJ, Stagliano KE, Anderson MA, Hassan S, Bowman M, Miles MF et al. Tumor-derived p53 mutants induce NF-kappaB2 gene expression. Mol Cell Biol 2005; 25: 10097–10110.

    Article  CAS  Google Scholar 

  42. Derynck R, Akhurst RJ, Balmain A . TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 2001; 29: 117–129.

    Article  CAS  Google Scholar 

  43. Gerwin BI, Spillare E, Forrester K, Lehman TA, Kispert J, Welsh JA et al. Mutant p53 can induce tumorigenic conversion of human bronchial epithelial cells and reduce their responsiveness to a negative growth factor, transforming growth factor beta 1. Proc Natl Acad Sci USA 1992; 89: 2759–2763.

    Article  CAS  Google Scholar 

  44. Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B et al. A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell 2009; 137: 87–98.

    Article  CAS  Google Scholar 

  45. Gurtner A, Starace G, Norelli G, Piaggio G, Sacchi A, Bossi G . Mutant p53-induced up-regulation of mitogen-activated protein kinase kinase 3 contributes to gain of function. J Biol Chem 2010; 285: 14160–14169.

    Article  CAS  Google Scholar 

  46. Lasorella A, Uo T, Iavarone A . Id proteins at the cross-road of development and cancer. Oncogene 2001; 20: 8326–8333.

    Article  CAS  Google Scholar 

  47. Fontemaggi G, Dell’Orso S, Trisciuoglio D, Shay T, Melucci E, Fazi F et al. The execution of the transcriptional axis mutant p53, E2F1 and ID4 promotes tumor neo-angiogenesis. Nat Struct Mol Biol 2009; 16: 1086–1093.

    Article  CAS  Google Scholar 

  48. Zimber A, Nguyen QD, Gespach C . Nuclear bodies and compartments: functional roles and cellular signalling in health and disease. Cell Signal 2004; 16: 1085–1104.

    Article  CAS  Google Scholar 

  49. Trotman LC, Alimonti A, Scaglioni PP, Koutcher JA, Cordon-Cardo C, Pandolfi PP . Identification of a tumour suppressor network opposing nuclear Akt function. Nature 2006; 441: 523–527.

    Article  CAS  Google Scholar 

  50. Gurrieri C, Capodieci P, Bernardi R, Scaglioni PP, Nafa K, Rush LJ et al. Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J Natl Cancer Inst 2004; 96: 269–279.

    Article  CAS  Google Scholar 

  51. Haupt S, di Agostino S, Mizrahi I, Alsheich-Bartok O, Voorhoeve M, Damalas A et al. Promyelocytic leukemia protein is required for gain of function by mutant p53. Cancer Res 2009; 69: 4818–4826.

    Article  CAS  Google Scholar 

  52. Zacchi P, Gostissa M, Uchida T, Salvagno C, Avolio F, Volinia S et al. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 2002; 419: 853–857.

    Article  CAS  Google Scholar 

  53. Zheng H, You H, Zhou XZ, Murray SA, Uchida T, Wulf G et al. The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature 2002; 419: 849–853.

    Article  CAS  Google Scholar 

  54. Terzian T, Suh YA, Iwakuma T, Post SM, Neumann M, Lang GA et al. The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. Genes Dev 2008; 22: 1337–1344.

    Article  CAS  Google Scholar 

  55. Feng L, Hollstein M, Xu Y . Ser46 phosphorylation regulates p53-dependent apoptosis and replicative senescence. Cell Cycle 2006; 5: 2812–2819.

    Article  CAS  Google Scholar 

  56. Luo JL, Yang Q, Tong WM, Hergenhahn M, Wang ZQ, Hollstein M . Knock-in mice with a chimeric human/murine p53 gene develop normally and show wild-type p53 responses to DNA damaging agents: a new biomedical research tool. Oncogene 2001; 20: 320–328.

    Article  CAS  Google Scholar 

  57. Song H, Hollstein M, Xu Y . p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat Cell Biol 2007; 9: 573–580.

    Article  CAS  Google Scholar 

  58. Nedelko T, Arlt VM, Phillips DH, Hollstein M . TP53 mutation signature supports involvement of aristolochic acid in the aetiology of endemic nephropathy-associated tumours. Int J Cancer 2009; 124: 987–990.

    Article  CAS  Google Scholar 

  59. Slade N, Moll UM, Brdar B, Zoric A, Jelakovic B . p53 mutations as fingerprints for aristolochic acid: an environmental carcinogen in endemic (Balkan) nephropathy. Mutat Res 2009; 663: 1–6.

    Article  CAS  Google Scholar 

  60. Heinlein C, Krepulat F, Lohler J, Speidel D, Deppert W, Tolstonog GV . Mutant p53(R270H) gain of function phenotype in a mouse model for oncogene-induced mammary carcinogenesis. Int J Cancer 2008; 122: 1701–1709.

    Article  CAS  Google Scholar 

  61. Schulze-Garg C, Lohler J, Gocht A, Deppert W . A transgenic mouse model for the ductal carcinoma in situ (DCIS) of the mammary gland. Oncogene 2000; 19: 1028–1037.

    Article  CAS  Google Scholar 

  62. Krepulat F, Lohler J, Heinlein C, Hermannstadter A, Tolstonog GV, Deppert W . Epigenetic mechanisms affect mutant p53 transgene expression in WAP-mutp53 transgenic mice. Oncogene 2005; 24: 4645–4659.

    Article  CAS  Google Scholar 

  63. Yan D, Zhou X, Chen X, Hu DN, Dong XD, Wang J et al. MicroRNA-34a inhibits uveal melanoma cell proliferation and migration through downregulation of c-Met. Invest Ophthalmol Vis Sci 2009; 50: 1559–1565.

    Article  Google Scholar 

  64. Grinkevich VV, Nikulenkov F, Shi Y, Enge M, Bao W, Maljukova A et al. Ablation of key oncogenic pathways by RITA-reactivated p53 is required for efficient apoptosis. Cancer Cell 2009; 15: 441–453.

    Article  CAS  Google Scholar 

  65. Rinaldo C, Prodosmo A, Mancini F, Iacovelli S, Sacchi A, Moretti F et al. MDM2-regulated degradation of HIPK2 prevents p53Ser46 phosphorylation and DNA damage-induced apoptosis. Mol Cell 2007; 25: 739–750.

    Article  CAS  Google Scholar 

  66. Rinaldo C, Prodosmo A, Siepi F, Moncada A, Sacchi A, Selivanova G et al. HIPK2 regulation by MDM2 determines tumor cell response to the p53-reactivating drugs nutlin-3 and RITA. Cancer Res 2009; 69: 6241–6248.

    Article  CAS  Google Scholar 

  67. Guida E, Bisso A, Fenollar-Ferrer C, Napoli M, Anselmi C, Girardini JE et al. Peptide aptamers targeting mutant p53 induce apoptosis in tumor cells. Cancer Res 2008; 68: 6550–6558.

    Article  CAS  Google Scholar 

  68. Boeckler FM, Joerger AC, Jaggi G, Rutherford TJ, Veprintsev DB, Fersht AR . Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proc Natl Acad Sci USA 2008; 105: 10360–10365.

    Article  CAS  Google Scholar 

  69. Lambert JM, Gorzov P, Veprintsev DB, Soderqvist M, Segerback D, Bergman J et al. PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell 2009; 15: 376–388.

    Article  CAS  Google Scholar 

  70. Olivier M, Petitjean A, Marcel V, Petre A, Mounawar M, Plymoth A et al. Recent advances in p53 research: an interdisciplinary perspective. Cancer Gene Ther 2009; 16: 1–12.

    Article  CAS  Google Scholar 

  71. Langerod A, Zhao H, Borgan O, Nesland JM, Bukholm IR, Ikdahl T et al. TP53 mutation status and gene expression profiles are powerful prognostic markers of breast cancer. Breast Cancer Res 2007; 9: R30.

    Article  Google Scholar 

  72. Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A et al. An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 2005; 102: 13550–13555.

    Article  CAS  Google Scholar 

  73. Fernandez-Cuesta L, Anaganti S, Hainaut P, Olivier M . Estrogen levels act as a rheostat on p53 levels and modulate p53-dependent responses in breast cancer cell lines. Breast Cancer Res Treat 2010; e-pub ahead of print 11 March 2010; doi:10.1007/s10549-010-0819-x.

    Article  Google Scholar 

  74. Bond GL, Hirshfield KM, Kirchhoff T, Alexe G, Bond EE, Robins H et al. MDM2 SNP309 accelerates tumor formation in a gender-specific and hormone-dependent manner. Cancer Res 2006; 66: 5104–5110.

    Article  CAS  Google Scholar 

  75. Bougeard G, Baert-Desurmont S, Tournier I, Vasseur S, Martin C, Brugieres L et al. Impact of the MDM2 SNP309 and p53 Arg72Pro polymorphism on age of tumour onset in Li-Fraumeni syndrome. J Med Genet 2006; 43: 531–533.

    Article  CAS  Google Scholar 

  76. Marcel V, Palmero EI, Falagan-Lotsch P, Martel-Planche G, Ashton-Prolla P, Olivier M et al. TP53PIN3 and MDM2 SNP309 polymorphisms as genetic modifiers in the Li-Fraumeni syndrome: impact on age at first diagnosis. J Med Genet 2009; 46: 766–772.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Fourth International Workshop on Mutant p53 was supported by the EU FP6 program on ‘Mutant p53’ and by the International Agency for Research on Cancer. Collaborations between IARC and The Weizmann Institute on ‘Mutant p53’ are supported by a grant of Cancéropôle Rhône-Alpes Auvergne, France. The authors gratefully thank the different lecturers for their contribution to the Workshop and to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Hainaut.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldstein, I., Marcel, V., Olivier, M. et al. Understanding wild-type and mutant p53 activities in human cancer: new landmarks on the way to targeted therapies. Cancer Gene Ther 18, 2–11 (2011). https://doi.org/10.1038/cgt.2010.63

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2010.63

Keywords

This article is cited by

Search

Quick links