Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Complications

Acute GvHD: pathogenesis and classification

Abstract

Allogeneic hematopoietic SCT (HSCT) is an established treatment for some children with life-threatening hematological disease, immune deficiencies and inborn errors of metabolism. Despite advances in prevention and post transplant immuno-suppressive strategies, acute GvHD (aGvHD) remains a major cause of morbidity and mortality in children undergoing SCT. Although reported incidence rates differ, it has been estimated that, depending upon the patient and donor cohort studied, 20–50% of all transplanted patients will experience grade 2 or more aGvHD despite immuno-suppressive prophylaxis. aGvHD occurs when transplanted donor T lymphocytes recognize antigenic disparities between the host and recipient. Pathways other than direct T-cell-mediated cytotoxicity have been shown to be important in the pathogenesis. Inflammatory cytokine release has been implicated as the primary mediator of aGvHD and activation of T cells is one step in the complex process. Deregulated cytokine release by cells other than T cells leads to tissue damage associated with aGvHD. GvHD is a factor that compromises the overall success rate of allogeneic HSCT and remains a challenge, which, in turn, requires an understanding of the pathophysiology, clinical presentation and management of this complication. The authors concentrate on the most recent knowledge of the pathogenesis as well as the classification of aGvHD.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Couriel A, Caldera H, Champlin R, Komanduri K . Acute graft versus host disease: pathophysiology, clinical manifestations, and management. Cancer 2004; 101: 1936–1946.

    Article  PubMed  Google Scholar 

  2. Goker H, Haznedaroglu IC, Chao NJ . Acute graft-vs-host disease: pathobiology and management. Exp Hematol 2001; 29: 259–277.

    Article  CAS  PubMed  Google Scholar 

  3. Billingham RE . The Biology of Graft-versus-host Disease. Academic Press Harvey Lecture: New York, 1966; 62: 21.

    Google Scholar 

  4. McCarthy NJ, Bishop MR . Non-myeloablative allogeneic stem cell transplantation: early promise and limitations. Oncologist 2000; 5: 487–496.

    Article  CAS  PubMed  Google Scholar 

  5. Marks DI, Lush R, Cavenagh J, Milligan DW, Schey S, Parker A et al. The toxicity and efficacy of donor lymphocyte infusions given after reduced-intensity conditioning allogeneic stem cell transplantation. Blood 2002; 100: 3108–3114.

    Article  CAS  PubMed  Google Scholar 

  6. Barge RM, Osanto S, Marijt WA, Starrenburg CW, Fibbe WE, Nortier JW et al. Minimal GVHD following in-vitro T cell-depleted allogeneic stem cell transplantation with reduced-intensity conditioning allowing subsequent infusions of donor lymphocytes in patients with hematological malignancies and solid tumors. Exp Hematol 2003; 31: 865–872.

    Article  CAS  PubMed  Google Scholar 

  7. Peggs KS, Thomson K, Hart DP, Geary J, Morris EC, Yong K et al. Dose-escalated donor lymphocyte infusions following reduced intensity transplantation: toxicity, chimerism, and disease responses. Blood 2004; 103: 1548–1556.

    Article  CAS  PubMed  Google Scholar 

  8. Massenkeil G, Nagy M, Lawang M, Rosen O, Genvresse I, Geserick G et al. Reduced intensity conditioning and prophylactic DLI can cure patients with high-risk acute leukaemias if complete donor chimerism can be achieved. Bone Marrow Transplant 2003; 31: 339–345.

    Article  CAS  PubMed  Google Scholar 

  9. Bader P, Kreyenberg H, Hoelle W, Dueckers G, Handgretinger R, Lang P et al. Increasing mixed chimerism is an important prognostic factor for unfavorable outcome in children with acute lymphoblastic leukemia after allogeneic stem-cell transplantation: possible role for pre-emptive immunotherapy? J Clin Oncol 2004; 22: 1696–1705.

    Article  PubMed  Google Scholar 

  10. Slavin S . Smarter rather than stronger treatment of hematological malignancies and non-malignant indications for stem-cell transplantation. Lancet 2004; 364: 122–124.

    Article  PubMed  Google Scholar 

  11. Goker H, Haznedaroglu IC, Chao NJ . Acute graft-vs-host-disease: Pathobiology and management. Exp Hematol 2001; 29: 259–277.

    Article  CAS  PubMed  Google Scholar 

  12. Chao NJ . Graft-vs-host disease. 2nd edn. RG Landes and Co: Austin, USA, 1999.

    Google Scholar 

  13. Martin PJ, Gooley T, Anasetti C, Petersdorf EW, Hansen JA . HLAs and risk of acute graft-versus-host disease after marrow transplantation from and HLA identical sibling. Biol Blood Marrow Transplant 1998; 4: 128–133.

    Article  CAS  PubMed  Google Scholar 

  14. Bland PW, Whiting CV . Induction of MHC class II gene products in rat intestinal epithelium during graft-vs-host disease and effects o the immune system of the epithelium. Immunology 1992; 75: 366–371.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. den Haan JM, Meadows LM, Wang W, Pool J, Blokland E, Bishop TL et al. The minor histocompatibility antigen HA-1: a diallelic gene with a single amino acid polymorphism. Science 1992; 279: 1054–1057.

    Article  Google Scholar 

  16. Goulmy E, Schipper R, Pool J, Blokland E, Falkenburg JH, Vossen J et al. Mismatches of minor incompatibility antigens between HLA-identical donors and recipients and the development of graft-versus-host disease after bone marrow transplantation. N Engl J Med 1996; 334: 281–285.

    Article  CAS  PubMed  Google Scholar 

  17. Dickinson AM, Charron D . Non HLA immunogenetics in hematopoietic stem cell transplantation. Curr Opin Imunnol 2005; 17: 517–525.

    Article  CAS  Google Scholar 

  18. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 2001; 411: 603–606.

    Article  CAS  PubMed  Google Scholar 

  19. Holler E, Rogler H, Herfarth H, Brenmoehl J, Wild PJ, Hahn J et al. Both donor and recipient NOD2/CARD15 mutations associate with transplant-related mortality and GvHD following allogeneic stem cell transplantation. Blood 2004; 104: 889–894.

    Article  CAS  PubMed  Google Scholar 

  20. Holler E, Rogler G, Brenmoehl J, Hahn J, Herfarth H, Greinix H et al. Prognostic significance of NOD2/CARD15 variants in HLA-identical sibling hematopoietic stem cell transplantation: effect on long-term outcome is confirmed in 2 independent cohorts and may be modulated by the type of gastrointestinal decontamination. Blood 2006; 107: 4189–4193.

    Article  CAS  PubMed  Google Scholar 

  21. Granell M, Urbano-Ispizua A, Aróstegui JI, Fernández-Avilés F, Martínez C, Rovira M et al. Effect of NOD2/CARD15 variants in T cell depleted allogeneic stem cell transplantation. Hematologica 2006; 91: 1372–4193.

    CAS  Google Scholar 

  22. Mullighan CG, Bardy PG . New directions in the genomic of allogeneic stem cell transplantation. Biol Blood Marrow Transplant 2007; 13: 127–144.

    Article  CAS  PubMed  Google Scholar 

  23. Baron C, Somogyi R, Greller LD, Rineau V, Wilkinson P, Cho CR et al. Prediction of graft versus host disease in humans by donor gene expression profiling. PLoS Med 2007; 4: e23.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Murphy N, Diviney M, Szer J, Bardy P, Grigg A, Hoyt R et al. Donor methylenetetra-hydrofolate reductase genotype is associated with graft versus host disease in hematopoietic stem cell transplant patients treated with methotrexate. Bone Marrow Transplant 2006; 377: 773–779.

    Article  Google Scholar 

  25. Robien K, Bigler J, Yasui Y, Potter JD, Martin P, Storb R et al. Methylenetetra-hydrofolate reductase and thymidylate synthase genotypes and risk of acute graft versus host disease following hematopoietic stem cell transplantation for chronic myelogenous leukemia. Biol Blood Marrow Transplant 2006; 12: 973–980.

    Article  CAS  PubMed  Google Scholar 

  26. Hill GR, Ferrara JL . The primacy of the gastrointestinal tract as a target organ of acute graft-versus-host disease: rationale for the use of cytokine shields in allogeneic bone marrow transplantation. Blood 2000; 95: 2754–2759.

    CAS  PubMed  Google Scholar 

  27. Ferrara JL, Cooke KR, Teshima T . The pathophysiology of acute graft-versus-host disease. Int J Hematol 2003; 78: 181–187.

    Article  CAS  PubMed  Google Scholar 

  28. Zeiser R, Marks R, Bertz H, Finke J . Immune pathogenesis of acute graft-versus-host disease: implications for novel preventive and therapeutic strategies. Ann Hematol 2004; 83: 551–565.

    Article  CAS  PubMed  Google Scholar 

  29. Mohty M, Blaise D, Faucher C, Vey N, Bouabdallah R, Stoppa AM et al. Inflammatory cytokines and acute graft versus host disease after reduced intensity conditioning allogeneic stem cell transplantation. Blood 2005; 106: 4407–4411.

    Article  CAS  PubMed  Google Scholar 

  30. Mossmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman R . Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986; 136: 2348–2357.

    Google Scholar 

  31. Via CS, Finkelman FD . Critical role of interleukin-2 in the development of acute graft-versus-host disease. Int Immunol 1993; 5: 565–572.

    Article  CAS  PubMed  Google Scholar 

  32. Schmaltz C, Alpdogan O, Horndasch KJ, Muriglan SJ, Kappel BJ, Teshima T et al. Differential use of Fas ligand and perforin cytotoxic pathways by donor T cells in graft-versus-host disease and graft-versus-leukemia effect. Blood 2001; 97: 2886–2895.

    Article  CAS  PubMed  Google Scholar 

  33. Wasem C, Frutschi C, Arnold D, Vallan C, Lin T, Green DR et al. Accumulation and activation-induced release of preformed Fas (CD95) ligand during the pathogenesis of experimental graft-versus-host disease. J Immunol 2001; 167: 2936–2941.

    Article  CAS  PubMed  Google Scholar 

  34. Rembereger M, Jaksch M, Uzunel M, Mattson J . Serum level of cytokines correlate to donor chimerism and acute graft-versus-host disease after hematopoietic stem cell transplantation. Blood 2003; 101: 2440–2445.

    Article  Google Scholar 

  35. Antin JH, Ferrara JL . Cytokine dysregulation and acute graft-versus-host disease. Blood 1992; 80: 2964–2968.

    CAS  PubMed  Google Scholar 

  36. Kalams SA, Walker BD . The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses. J Exp Immunol 2002; 169: 7111–7118.

    Article  Google Scholar 

  37. Jansssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP . CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 2003; 421: 852–856.

    Article  Google Scholar 

  38. Ho VT, Kim HT, Li S, Hochberg EP, Cutler C, Lee SJ et al. Partial CD8+ T-cell depletion of allogeneic peripheral blood stem cell transplantation is insufficient to prevent graft-versus-host disease. Bone Marrow Transplant 2004; 34: 987–994.

    Article  CAS  PubMed  Google Scholar 

  39. Dieckman D, Bruett CH, Ploettner H, Lutz MB, Schuler G . Human CD4+CD25+ regulatory contact-dependent T cells induce interleukin 10-producing, contact independent type I like regulatory T cells. J Exp Med 2002; 196: 247–253.

    Article  Google Scholar 

  40. Nakaruma K, Kitani A, Strober W . Cell contact-dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface transforming growth factor beta. J Exp Med 2001; 194: 629–644.

    Article  Google Scholar 

  41. Stanzani M, Martins SL, Saliba RM, St John LS, Bryan S, Couriel D et al. CD25 expression on donor CD4+ or CD8+ T cells is associated with an increased risk of graft versus host disease after HLA identical stem cell transplantation in humans. Blood 2004; 103: 1140–1146.

    Article  CAS  PubMed  Google Scholar 

  42. Clark FJ, Gregg R, Piper K, Dunnion D, Freeman L, Griffiths M et al. Chronic graft versus host disease is associated with increased numbers of peripheral blood CD4+CD25 high regulatory T cells. Blood 2004; 103: 2410–2416.

    Article  CAS  PubMed  Google Scholar 

  43. Shlomchik WD, Couzens MS, Tang CB, McNiff J, Robert ME, Liu J et al. Prevention of graft versus host disease by inactivation of host antigen presenting cells. Science 1999; 285: 412–415.

    Article  CAS  PubMed  Google Scholar 

  44. Duffner UA, Maeda Y, Cooke KR, Reddy P, Ordemann R, Liu C et al. Host dendritic cells alone are sufficient to initiate acute graft-versus-host disease. J Immunol 2004; 172: 7393–7398.

    Article  CAS  PubMed  Google Scholar 

  45. Matte CC, Liu J, Cormier J, Anderson BE, Athanasiadis I, Jain D et al. Donor APC's are required for maximal GvHD but not for GVL. Nat Med 2004; 10: 987–992.

    Article  CAS  PubMed  Google Scholar 

  46. Via CS, Nguyen P, Shustov A, Drappa J, Elkon KB . A major role for the Fas pathway in acute graft versus host disease. J Immunol 1996; 157: 5387–5393.

    CAS  PubMed  Google Scholar 

  47. Mapara MY, Leng C, Kim YM, Bronson R, Lokshin A, Luster A et al. Expression of chemokines in GvHD target organs is influenced by conditioning and genetic factors and amplified by GVHR. Biol Blood Marrow Transplant 2006; 12: 623–634.

    Article  CAS  PubMed  Google Scholar 

  48. Faaij CM, Lankester AC, Spierings E, Hoogeboom M, Bowman EP, Bierings M et al. A possible role for CCL27/CTACK-CCR10 interaction in recruiting CD4+ T cells to skin in human graft verusus host disease. Br J Haematol 2006; 133: 538–549.

    Article  PubMed  Google Scholar 

  49. Beatty PG, Clift RA, Mickelson EM, Nisperos BB, Flournoy N, Martin PJ et al. Marrow transplantation from related donors other than HLA-identical siblings. N Engl J Med 1985; 313: 765–771.

    Article  CAS  PubMed  Google Scholar 

  50. Weisdorf D, Hakke R, Blazar B, Miller W, McGlave P, Ramsay N et al. Risk factors for acute graft versus host disease in histocompatible donor bone marrow transplantation. Transplantation 1991; 51: 1197–1293.

    Article  CAS  PubMed  Google Scholar 

  51. Kollman C, Howe CW, Anasetti C, Antin JH, Davies SM, Filipovich AH et al. Donor characteristics as risk factors in recipients after transplantation of bone marrow from unrelated donors. Blood 2001; 98: 2043–2051.

    Article  CAS  PubMed  Google Scholar 

  52. Cutler C, Giri S, Jeyapalan S, Paniagua D, Viswanathan A, Antin JH . Acute and chronic graft versus host disease after allogeneic peripheral blood stem cell and bone marrow transplantation: a meta-analysis. J Clin Oncol 2001; 19: 3685–3691.

    Article  CAS  PubMed  Google Scholar 

  53. Przepiorka D, Smith TL, Folloder J, Khouri I, Ueno NT, Mehra R et al. Risk factors for acute graft-versus-host disease after allogeneic blood stem cell transplantation. Blood 1999; 94: 1465–1470.

    CAS  PubMed  Google Scholar 

  54. Leisenring WM, Martin PJ, Petersdorf EW, Regan AE, Aboulhosn N, Stern JM et al. An acute graft versus host disease activity index to predict survival after hematopoietic stem cell transplantation with myeloablative conditioning regimens. Blood 2006; 108: 749–755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J et al. 1994 Consensus conference on acute GvHD grading. Bone Marrow Transplant 1995; 15: 825–828.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to L M Ball.

Additional information

Conflict of interest

Neither author declared any financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ball, L., Egeler, R. & on behalf of the EBMT Paediatric Working Party. Acute GvHD: pathogenesis and classification. Bone Marrow Transplant 41 (Suppl 2), S58–S64 (2008). https://doi.org/10.1038/bmt.2008.56

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2008.56

Keywords

This article is cited by

Search

Quick links