Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

The well-tempered vessel

Although gene therapy studies of angiogenesis have focused on the ability of endothelial cells to form new structures, it has recently become clear that the subsequent stages of remodeling are crucial to attaining stable and functional vessels. A precise balance of cell types and molecules is required for normal vessel maturation and must be considered in the design of therapeutic angiogenic strategies.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene therapy approaches that take into account the complex interplay of molecules and cell types essential for normal angiogenesis and the development of mature vessels.

Bob Crimi

References

  1. Vale, P.R. et al. Left ventricular electromechanical mapping to assess efficacy of phVEGF (165) gene transfer for therapeutic angiogenesis in chronic myocardial ischemia. Circulation 102, 965–974 (2000).

    Article  CAS  Google Scholar 

  2. Rosengart, T.K. et al. Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 100, 468–474 (1999).

    Article  CAS  Google Scholar 

  3. Springer, M.L., Chen, A.S., Kraft, P.E., Bednarski, M. & Blau, H.M. VEGF gene delivery to muscle: potential role for vasculogenesis in adults. Mol. Cell. 2, 549–558 (1998).

    Article  CAS  Google Scholar 

  4. Lee, R.J. et al. VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation 102, 898–901 (2000).

    Article  CAS  Google Scholar 

  5. Schwarz, E.R. et al. Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat—angiogenesis and angioma formation. J. Am. Coll. Cardiol. 35, 1323–1330 (2000).

    Article  CAS  Google Scholar 

  6. Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biol. 2, 737–744 (2000).

    Article  CAS  Google Scholar 

  7. Darland, D.C. & D'Amore, P.A. Blood vessel maturation: vascular development comes of age. J. Clin. Invest. 103, 157–158 (1999).

    Article  CAS  Google Scholar 

  8. Benjamin, L.E., Golijanin, D., Itin, A., Pode, D. & Keshet, E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J. Clin. Invest. 103, 159–165 (1999).

    Article  CAS  Google Scholar 

  9. Lindahl, P., Johansson, B.R., Leveen, P. & Betsholtz, C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277, 242–245 (1997).

    Article  CAS  Google Scholar 

  10. Carmeliet, P. & Jain, R.K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    Article  CAS  Google Scholar 

  11. Thurston, G. et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nature Med. 6, 460–463. (2000).

    Article  CAS  Google Scholar 

  12. Vincent, K.A. et al. Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an HIF-1α/VP16 hybrid transcription factor. Circulation 102, 2255–2261 (2000).

    Article  CAS  Google Scholar 

  13. Li, J. et al. PR39, a peptide regulator of angiogenesis. Nature Med. 6, 49–55 (2000).

    Article  CAS  Google Scholar 

  14. Schultz, A. et al. Interindividual heterogeneity in the hypoxic regulation of VEGF: significance for the development of the coronary artery collateral circulation. Circulation 100, 547–552 (1999).

    Article  CAS  Google Scholar 

  15. Yancopoulos, G.D., Klagsbrun, M. & Folkman, J. Vasculogenesis, angiogenesis, and growth factors: ephrins enter the fray at the border. Cell 93, 661–664 (1998).

    Article  CAS  Google Scholar 

  16. Ruoslahti, E. & Rajotte, D. An address system in the vasculature of normal tissues and tumors. Annu. Rev. Immunol. 18, 813–827 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blau, H., Banfi, A. The well-tempered vessel. Nat Med 7, 532–534 (2001). https://doi.org/10.1038/87850

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/87850

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing