Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Immune suppression and skin cancer development: regulation by NKT cells

Abstract

Ultraviolet (UV) radiation is carcinogenic and immunosuppressive. UV-induced immune suppression is mediated by antigen-specific T cells, which can transfer suppression to normal recipients. These cells are essential for controlling skin cancer development in the UV-irradiated host and in suppressing other immune responses, such as delayed-type hypersensitivity. Despite their importance in skin cancer development, their exact identity has remained elusive. We show here that natural killer T cells from UV-irradiated donor mice function as suppressor T cells and play a critical role in regulating the growth of UV-induced skin cancers and suppressing adaptive immune responses in vivo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TCR expression and IL-4 production by T cells isolated from the spleens of UV-irradiated mice.
Figure 2: NKT cells mediate UV-induced immune suppression.
Figure 3: UV-induced NKT cells are CD1-restricted.
Figure 4: CD4+ DX5+ T cells transfer antigen-specific suppression of tumor immunity.

Similar content being viewed by others

References

  1. Boring, C. C., Squires, T. S. & Tong, T. Cancer Statistics. Cancer J. Clin. 42, 19–38 (1992).

    Article  CAS  Google Scholar 

  2. Urbach, F. Ultraviolet radiation and skin cancer of humans. J. Photochem. Photobiol. B 40, 3–7 ( 1997).

    Article  CAS  Google Scholar 

  3. Penn, I. Depressed immunity and skin cancer. Immunol. Today 5, 291–293 (1984).

    Article  CAS  Google Scholar 

  4. Yoshikawa, T. et al. Susceptibility to effects of UVB radiation on induction of contact hypersensitivity as a risk factor for skin cancer in humans. J. Invest. Dermatol. 95, 530–536 (1990).

    Article  CAS  Google Scholar 

  5. Fisher, M. S. & Kripke, M. L. Suppressor T lymphocytes control the development of primary skin cancers in UV-irradiated mice. Science 216, 1133–1134 ( 1982).

    Article  CAS  Google Scholar 

  6. Ullrich, S. E. & Kripke, M. L. Mechanisms in the suppression of tumor rejection produced in mice by repeated UV irradiation. J. Immunol. 133, 2786–2790 (1984).

    CAS  PubMed  Google Scholar 

  7. Daynes, R. A. & Spellman, C. W. Evidence for the generation of suppressor cells by UV radiation. Cell. Immunol. 31, 182–187 (1977).

    Article  CAS  Google Scholar 

  8. Fisher, M. S. & Kripke, M. L. Systemic alteration induced in mice by ultraviolet light irradiation and its relationship to ultraviolet carcinogenesis. Proc. Natl Acad. Sci. USA. 74, 1688–1692 (1977).

    Article  CAS  Google Scholar 

  9. Rivas, J. M. & Ullrich, S. E. The role of IL-4, IL-10, and TNF-α in the immune suppression induced by ultraviolet radiation. J. Leukoc. Biol. 56, 769–775 (1994).

    Article  CAS  Google Scholar 

  10. Vicari, A. P. & Zlotnik, A. Mouse NK1.1+ T cells: a new family of T cells. Immunol. Today 17, 71– 76 (1996).

    Article  CAS  Google Scholar 

  11. Bendelac, A., Rivera, M. N., Park, S. H. & Roark, J. H. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu. Rev. Immunol. 15, 535–562 (1997).

    Article  CAS  Google Scholar 

  12. Yoshimoto, T. & Paul, W. E. CD4+, NK1.1+ T cells promptly produce interleukin 4 in response to in vivo challenge with anti-CD3. J. Exp. Med. 179, 1285–1295 (1994).

    Article  CAS  Google Scholar 

  13. Moodycliffe, A. M., Maiti, S. & Ullrich, S. E. Splenic NK1.1-negative, TCR intermediate CD4+ T cells exist in naive NK1.1 allelic positive and negative mice, with the capacity to rapidly secrete large amounts of IL-4 and IFN-γ upon primary TCR stimulation. J. Immunol. 162, 5156–5163 (1999).

    CAS  PubMed  Google Scholar 

  14. Mendiratta, S. K. et al. CD1d1 mutant mice are deficient in natural T cells that promptly produce IL-4. Immunity 6, 469– 477 (1997).

    Article  CAS  Google Scholar 

  15. Bendelac, A. et al. CD1 recognition by mouse NK1+ T lymphocytes . Science 268, 863–865 (1995).

    Article  CAS  Google Scholar 

  16. Zeng, D. F. et al. Bone marrow NK1.1(−) and NK1.1(+) T cells reciprocally regulate acute graft versus host disease. J. Exp. Med. 189, 1073–1081 (1999).

    Article  CAS  Google Scholar 

  17. Sonoda, K. -H., Exley, M., Snapper, S., Balk, S. P. & Stein-Streilein, J. CD1-reactive natural killer T cells are required for development of systemic tolerance through an immune-privileged site. J. Exp. Med. 190, 1215–1226 (1999).

    Article  CAS  Google Scholar 

  18. Ikehara, Y. et al. CD4+ Vα 14 natural killer T cells are essential for acceptance of rat islet xenografts in mice. J. Clin. Invest. 105, 1761–1767 (2000).

    Article  CAS  Google Scholar 

  19. Moore, T. A., von Freeden-Jeffry, U., Murray, R. & Zlotnik, A. Inhibition of γδ T cell development and early thymocyte maturation in IL-7−/− mice. J Immunol 157, 2366–2373 (1996).

    CAS  PubMed  Google Scholar 

  20. Singh, N. et al. Cutting Edge: Activation of NK T cells by CD1d and α-Galactosyl-ceramide directs conventional T cells to the acquisition of a Th2 phenotype. J. Immunol. 163, 2373–2377 (1999).

    CAS  PubMed  Google Scholar 

  21. Zeng, Z. -H. et al. Crystal structure of mouse CD1: an MHC-like fold with a large hydrophobic binding groove. Science 227, 339–345 (1997).

    Article  Google Scholar 

  22. Moody, D. B., Besra, G. S., Wilson, I. A. & Porcelli, S. A. The molecular basis of CD1-mediated presentation of lipid antigens. Immunol. Rev. 172, 285–296 (1999).

    Article  CAS  Google Scholar 

  23. Castano, A. R. et al. Peptide binding and presentation by mouse CD1. Science 269, 223–226 ( 1995).

    Article  CAS  Google Scholar 

  24. Lee, D. J., Abeyratne, A., Carson, D. A. & Corr, M. Induction of an antigen-specific, CD1-restricted cytotoxic T lymphocyte response in vivo. J. Exp. Med. 187, 433– 438 (1998).

    Article  CAS  Google Scholar 

  25. Assarsson, E. et al. CD8+ T cells rapidly acquire NK1.1 and NK cell-associated molecules upon stimulation in vitro and in vivo. J. Immunol. 165, 3673–3679 (2000).

    Article  CAS  Google Scholar 

  26. Ullrich, S. E. & Magee, M. J. Specific suppression of allograft rejection after treatment of recipient mice with UV radiation and allogeneic spleen cells. Transplantation 46, 115–119 (1988).

    Article  CAS  Google Scholar 

  27. Ullrich, S. E., McIntyre, B. W. & Rivas, J. M. Suppression of the immune response to alloantigen by factors released from ultraviolet-irradiated keratinocytes. J. Immunol. 145, 489–498 (1990).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Ananthaswamy and L. Owen-Schaub for critically reviewing this manuscript and L. Van Kaer for providing inbred CD1-deficient and WT mice. Supported by grants from the NIH (CA75575 and ES07327). The animal facilities at UT MDACC are supported in part by a NCI Core Grant (CA16672).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen E. Ullrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moodycliffe, A., Nghiem, D., Clydesdale, G. et al. Immune suppression and skin cancer development: regulation by NKT cells . Nat Immunol 1, 521–525 (2000). https://doi.org/10.1038/82782

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/82782

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing