Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells

Abstract

Mammalian cells proteolytically release (shed) the extracellular domains of many cell-surface proteins1. Modification of the cell surface in this way can alter the cell's responsiveness to its environment2 and release potent soluble regulatory factors3. The release of soluble tumour-necrosis factor-α (TNF-α) from its membrane-bound precursor4,5 is one of the most intensively studied shedding events because this inflammatory cytokine is so physiologically important6,7. The inhibition of TNF-α release (and many other shedding phenomena) by hydroxamic acid-based inhibitors indicates that one or more metalloproteinases is involved3,8,9. We have now purified and cloned a metalloproteinase that specifically cleaves precursor TNF-α. Inactivation of the gene in mouse cells caused a marked decrease in soluble TNF-α production. This enzyme (called the TNF-α-converting enzyme, or TACE) is a new member of the family of mammalian adama-lysins (or ADAMs)10, for which no physiological catalytic function has previously been identified. Our results should facilitate the development of therapeutically useful inhibitors of TNF-α release, and they indicate that an important function of adamalysins may be to shed cell-surface proteins.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rose-John, S. & Heinrich, P. C. Soluble receptors for cytokines and growth factors: generation and biological function. Biochem. J. 300, 281–290 (1994).

    Article  CAS  Google Scholar 

  2. Walcheck, B. et al. Neutrophil rolling altered by inhibition of L-selectin shedding in vitro. Nature 380, 720–723 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Mohler, K. M. et al. Protection against a lethal dose of endotoxin by an inhibitor of tumour necrosis factor processing. Nature 370, 218–220 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Decker, T., Lohmann-Matthes, M. L. & Gifford, G. E. Cell-associated tumour necrosis factor (TNF) as a killing mechanism of activated cytotoxic macrophages. J. Immunol. 138, 957–962 (1987).

    CAS  PubMed  Google Scholar 

  5. Kriegler, M., Perez, C., De Fay, K., Albert, I. & Lu, S. D. A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell 53, 45–53 (1988).

    Article  CAS  Google Scholar 

  6. Bazzoni, F. & Beutler, B. The tumor necrosis factor ligand and receptor families. N. Engl. J. Med. 334, 1717–1725 (1996).

    Article  CAS  Google Scholar 

  7. Sherry, B. & Cerami, A. Cachectin/tumor necrosis factor exerts endocrine, paracrine, and autocrine control of inflammatory responses. J. Cell Biol. 107, 1269–1277 (1988).

    Article  CAS  Google Scholar 

  8. McGeehan, G. M. et al. Regulation of tumour-necrosis factor-α processing by a metalloproteinase inhibitor. Nature 370, 558–561 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Gearing, A. J. et al. Processing of tumour-necrosis factor-α precursor by metalloproteinases. Nature 370, 555–557 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Wolfsberg, T. G. & White, J. M. ADAMs in fertilization and development. Dev. Biol. 180, 389–401 (1996).

    Article  CAS  Google Scholar 

  11. Black, R. A. et al. Relaxed specificity of matrix metalloproteinases (MMPs) and TIMP-insensitivity of tumor necrosis factor-α (TNF-α) production suggest the major TNF-α converting enzyme is not an MMP. Biochem. Biophys. Res. Commun. 225, 400–405 (1996).

    Article  CAS  Google Scholar 

  12. Stocker, W. et al. The metzincins—topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci. 4, 823–840 (1995).

    Article  CAS  Google Scholar 

  13. Howard, L., Lu, X., Mitchell, S., Griffiths, S. & Glynn, P. Molecular cloning of MADM: a catalytically active mammalian disintegrin-metalloprotease expressed in various cell types. Biochem. J. 317, 45–50 (1996).

    Article  CAS  Google Scholar 

  14. Cerretti, D. P. et al. Molecular cloning of the interleukin-1β converting enzyme. Science 256, 97–100 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Woessner, J. F. Jr Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 5, 2145–2154 (1991).

    Article  CAS  Google Scholar 

  16. Barr, P. J. Mammalian subtilisins: the long-sought dibasic processing endoproteases. Cell 66, 1–3 (1991).

    Article  CAS  Google Scholar 

  17. Teeter, M. M., Roe, S. M. & Heo, N. H. Atomic resolution (0.83 A) crystal structure of the hydrophobic protein crambin at 130K. J. Mol. Biol. 230, 292–311 (1993).

    Article  CAS  Google Scholar 

  18. Wolfsberg, T. G. et al. The precursor region of a protein active in sperm-egg fusion contains a metalloprotease and a disintegrin domain: structural, functional, and evolutionary implications. Proc. Natl Acad. Sci. USA 90, 10783–10787 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Yoshida, S., Setoguchi, M., Higuchi, Y., Akizuki, S. & Yamamoto, S. Molecular cloning of cDNA encoding MS2 antigen, a novel cell surface antigen strongly expressed in murine monocytic lineage. Int. Immunol. 2, 585–591 (1990).

    Article  CAS  Google Scholar 

  20. Krätzschmar, J., Lum, L. & Blobel, C. P. Metargidin, a membrane-anchored metalloprotease-disintegrin protein with an RGD integrin binding sequence. J. Biol. Chem. 271, 4593–4596 (1996).

    Article  Google Scholar 

  21. Yagami-Hiromasa, T. et al. A metalloprotease-disintegrin participating in myoblast fusion. Nature 377, 652–656 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Weskamp, G., Krätzschmar, J., Reid, M. S. & Blobel, C. P. MDC9, a widely expressed cellular disintegrin containing cytoplasmic SH3 ligand domains. J. Cell. Biol. 132, 717–726 (1996).

    Article  CAS  Google Scholar 

  23. McMahan, C. J. et al. A novel IL-1 receptor, cloned from B cells by mammalian expression, is expressed in many cell types. EMBO J. 10, 2821–2832 (1991).

    Article  CAS  Google Scholar 

  24. Peschon, J. J. et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J. Exp. Med. 180, 1955–1960 (1994).

    Article  CAS  Google Scholar 

  25. Mortensen, R. M., Conner, D. A., Chao, S., Geisterfer-Lowrance, A. A. & Seidman, J. G. Production of homozygous mutant ES cells with a single targeting construct. Mol. Cell. Biol. 12, 2391–2395 (1992).

    Article  CAS  Google Scholar 

  26. Dexter, T. M., Allen, T. D. & Lajtha, L. G. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J. Cell. Physiol. 91, 335–344 (1976).

    Article  Google Scholar 

  27. Snell, W. J. & White, J. M. The molecules of mammalian fertilization. Cell 85, 629–637 (1996).

    Article  CAS  Google Scholar 

  28. Libby, P., Alroy, J. & Pereira, M. E. A neuraminidase from Trypanosoma cruzi removes sialic acid from the surface of mammalian myocardial and endothelial cells. J. Clin. Invest. 77, 127–135 (1986).

    Article  CAS  Google Scholar 

  29. Warner, S. J. & Libby, P. Human vascular smooth muscle cells. Target for and source of tumor necrosis factor. J. Immunol 142, 100–109 (1989).

    CAS  PubMed  Google Scholar 

  30. Meier, T., Arni, S., Malarakannan, S., Poincelet, M. & Hoessli, D. Immunodetection of biotinylated lymphocyte-surface proteins by enhanced chemiluminescence: a nonradioactive method for cell-surface protein analysis. Anal. Biochem. 204, 220–226 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Black, R., Rauch, C., Kozlosky, C. et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature 385, 729–733 (1997). https://doi.org/10.1038/385729a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385729a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing