Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI-C

Abstract

GROWTH is one of the fundamental aspects in the development of an organism. Classical genetic studies have isolated four viable, spontaneous mouse mutants1 disrupted in growth, leading to dwarfism. Pygmy is unique among these mutants because its phenotype cannot be explained by aberrations in the growth hormone–insulin-like growth factor endocrine pathway2–5. Here we show that the pygmy phenotype arises from the inactivation of Hmgi-c (ref. 6), a member of the Hmgi family7 which function as architectural factors in the nuclear scaffold8 and are critical in the assembly of stereospecific transcriptional complexes9. Hmgi-c and another Hmgi family member, Hmgi(y) (ref. 10), were found to be expressed predominantly during embryogenesis. The HMGI proteins are known to be regulated by cell cycle-dependent phos-phorylation which alters their DNA binding affinity11. These results demonstrate the important role of HMGI proteins in mammalian growth and development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Green, M. C. in Genetic Variants and Strains of the Laboratory Mouse (eds Lyon, M. & Searle, A.) 12–403 (Oxford Univ. Press, 1989).

    Google Scholar 

  2. Lin, S.-C. et al. Nature 364, 208–213 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Li, S. et al. Nature 347, 528–533 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Sinha, Y., Wolff, G., Baxter, S. & Domon, O. Proc. Soc. exp. Biol. Med. 162, 221–223 (1979).

    Article  CAS  Google Scholar 

  5. Nissley, S., Knazek, R. & Wolff, G. Hormone Metab. Res. 12, 158–164 (1980).

    Article  CAS  Google Scholar 

  6. Manfioletti, G. et al. Nucleic Acids Res. 19, 6793–6797 (1991).

    Article  CAS  Google Scholar 

  7. Grosschedl, R., Giese, K. & Pagel, J. Trends Genet. 10, 94–100 (1994).

    Article  CAS  Google Scholar 

  8. Saitoh, Y. & Laemmli, U. K. Cell 76, 609–622 (1994).

    Article  CAS  Google Scholar 

  9. Tjian, R. & Maniatis, T. Cell 77, 5–8 (1994).

    Article  CAS  Google Scholar 

  10. Johnson, K., Lehn, D., Elton, T., Barr, P. & Reeves, R. J. biol. Chem. 263, 18338–18342 (1988).

    CAS  PubMed  Google Scholar 

  11. Reeves, R., Langan, T. A. & Nissen, M. S. Proc. natn. Acad. Sci. U.S.A. 88, 1671–1675 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Xiang, X., Benson, K. & Chada, K. Science 247, 967–969 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Buckler, A. et al. Proc. natn. Acad. Sci. U.S.A. 88, 4005–4009 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Ausubel, F. et al. Current Protocols in Molecular Biology (Wiley, New York, 1988).

    Google Scholar 

  15. Thanos, D. & Maniatis, T. Cell 71, 777–789 (1992).

    Article  CAS  Google Scholar 

  16. Du, W., Thanos, D. & Maniatis, T. Cell 74, 887–898 (1993).

    Article  CAS  Google Scholar 

  17. King, J. Genetics 53, 487–497 (1955).

    Article  Google Scholar 

  18. Chirgwin, J., Przybyla, A., MacDonald, R. & Rutter, W. Biochemistry 18, 5294–5299 (1979).

    Article  CAS  Google Scholar 

  19. Benson, K. & Chada, K. Genet. Res. 64, 27–33 (1994).

    Article  CAS  Google Scholar 

  20. Ram, T., Reeves, R. & Hosick, H. L. Cancer Res. 53, 2655–2660 (1993).

    CAS  PubMed  Google Scholar 

  21. Berlingieri, M. T. et al. Molec. cell. Biol. 15, 1545–1553 (1995).

    Article  CAS  Google Scholar 

  22. Lehrach, H. et al. in Genome Analysis Vol. 1. Genetic and Physical Mapping (eds Davies, K. & Tilghman, S.) 39–81 (Cold Spring Harbor Laboratory Press, New York, 1990).

    Google Scholar 

  23. Barbu, V. & Dautry, F. Nucleic Acids Res. 17, 7115 (1989).

    Article  CAS  Google Scholar 

  24. Duncan, M., DiCicco-Bloom, E. M., Xiang, X., Benezra, R. & Chada, K. Devl Biol. 154, 1–10 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., Benson, K., Ashar, H. et al. Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI-C. Nature 376, 771–774 (1995). https://doi.org/10.1038/376771a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376771a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing