Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states

Abstract

AEROLYSIN is chiefly responsible for the pathogenicity of Aeromonas hydrophila, a bacterium associated with diarrhoeal diseases and deep wound infections1. Like many other microbial toxins, the protein changes in a multistep process from a completely water-soluble form to produce a transmembrane channel that destroys sensitive cells by breaking their permeability barriers2. Here we describe the structure of proaerolysin determined by X-ray crystallography at 2.8 Å resolution. The protoxin (Mr 52,000) adopts a novel protein fold. Images of an aerolysin oligomer derived from electron microscopy have assisted in constructing a model of the membrane channel and have led to the proposal of a scheme to account for insertion of the protein into lipid bilayers to form ion channels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Altwegg, M. & Geiss, H. K. CRC Crit. Rev. Micmbiol. 16, 253–286 (1989).

    Article  CAS  Google Scholar 

  2. Parker, M. W., Tucker, A. D., Tsernoglou, D. & Pattus, F. Trends biochem. Sci. 15, 126–129 (1990).

    Article  CAS  Google Scholar 

  3. Bernstein, F. C. et al. J. molec. Biol. 112, 535–542 (1977).

    Article  CAS  Google Scholar 

  4. Arnold, E. & Rossmann, M. G. J. molec. Biol. 211, 763–801 (1990).

    Article  CAS  Google Scholar 

  5. Argos, P. Protein Eng. 2, 101–113 (1988).

    Article  CAS  Google Scholar 

  6. van der Goot, F. G., Ausio, J., Wong, K. R., Pattus, F. & Buckley, J. T. J. biol. Chem., 268, 18272–18279 (1993).

    CAS  PubMed  Google Scholar 

  7. Garland, W. J. & Buckley, J. T. Infect. Immunity 56, 1249–1253 (1988).

    CAS  Google Scholar 

  8. van der Goot, F. G. et al. Biochemistry. 31, 8566–8570 (1992).

    Article  CAS  Google Scholar 

  9. Green, M. J. & Buckley, J. T. Biochemistry 29, 2177–2180 (1990).

    Article  CAS  Google Scholar 

  10. Wilmsen, H-U., Pattus, F. & Buckley, J. T. J. Membrane Biol. 115, 71–81 (1990).

    Article  CAS  Google Scholar 

  11. van der Goot, F. G., Pattus, F., Wong, K. R. & Buckley, J. T. Biochemistry 32, 2636–2642 (1993).

    Article  CAS  Google Scholar 

  12. Wilmsen, H-U., Buckley, J. T. & Pattus, F. Molec. Microbiol. 5, 2745–2751 (1991).

    Article  CAS  Google Scholar 

  13. Wilmsen, H-U., Leonard, K. R., Tichelaar, W., Buckley, J. T. & Pattus, F. EMBO J. 11, 2457–2463 (1992).

    Article  CAS  Google Scholar 

  14. Weiss, M. S. et al. Science 254, 1627–1630 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Cowan, S. W. et al. Nature 358, 727–733 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Bhakdi, S. & Tranum-Jensen, J. Rev. Physiol. Biochem. Pharmac. 107, 148–156 (1987).

    Google Scholar 

  17. Wiley, D. C. & Skehel, J. J. Rev. Biochem. 56, 365–394 (1987).

    Article  CAS  Google Scholar 

  18. Wickner, W. Trends biochem. Sci. 14, 280–283 (1989).

    Article  CAS  Google Scholar 

  19. Tucker, A. D., Parker, M. W., Tsernoglou, D. & Buckley, J. T. J. molec. Biol. 212, 561–562 (1990).

    Article  CAS  Google Scholar 

  20. CCP4 (Daresbury Laboratory, Warrington WA4 4AD, UK, 1979).

  21. Jones, A. J. appl. Crystallogr. 11, 268–274 (1978).

    Article  CAS  Google Scholar 

  22. Vellieux, F. M. D. et al. Proc. natn. Acad. Sci. U.S.A. 90, 2355–2359.

  23. van Gunsteren, W. F. Protein Engng 2, 5–13 (1988).

    Article  CAS  Google Scholar 

  24. Hendrickson, W. A. & Konnert, J. M. in Computing in Crystallography (eds Diamond, R., Ramaseshan, S. & Venkalesan, K.) 13.01–13.23 (Indian Academy of Science, Int. Union of Crystallography, Bangalore, 1980).

    Google Scholar 

  25. Ferrin, T. E., Huang, C. C., Jarvis, L. E. & Langridge, R. J. molec. Graph. 6, 13–27 (1988).

    Article  CAS  Google Scholar 

  26. Kabsch, W. & Sander, C. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

  27. Kraulis, J. P. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, M., Buckley, J., Postma, J. et al. Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states. Nature 367, 292–295 (1994). https://doi.org/10.1038/367292a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367292a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing