Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of NF-κB in p53-mediated programmed cell death

Abstract

The tumour suppressor p53 inhibits cell growth through activation of cell-cycle arrest and apoptosis1, and most cancers have either mutation within the p53 gene or defects in the ability to induce p53. Activation or re-introduction of p53 induces apoptosis in many tumour cells and may provide effective cancer therapy2. One of the key proteins that modulates the apoptotic response is NF-κB, a transcription factor that can protect or contribute to apoptosis3. Here we show that induction of p53 causes an activation of NF-κB that correlates with the ability of p53 to induce apoptosis. Inhibition or loss of NF-κB activity abrogated p53-induced apoptosis, indicating that NF-κB is essential in p53-mediated cell death. Activation of NF-κB by p53 was distinct from that mediated by tumour-necrosis factor-α and involved MEK1 and the activation of pp90rsk. Inhibition of MEK1 blocked activation of NF-κB by p53 and completely abrogated p53-induced cell death. We conclude that inhibition of NF-κB in tumours that retain wild-type p53 may diminish, rather than augment, a therapeutic response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA binding by NF-κB.
Figure 2: NF-κB activation is associated with the apoptotic activity of p53 and is not induced after cell death induced by Bax.
Figure 3: NF-κB is essential for p53-induced cell death.
Figure 4: Inhibition of NF-κB abrogates p53-mediated apoptosis, but not cell cycle arrest.
Figure 5: E1A transformed p65-/- MEFs are resistant to p53-mediated apoptosis.
Figure 6: Signalling pathways involved in the activation of NF-κB by p53 are distinct from those engaged by TNFα and involve the RAF/MAPK pathway.

Similar content being viewed by others

References

  1. Sionov,R. V. & Haupt,Y. The cellular response to p53: the decision between life and death. Oncogene 18, 6145 –6157 (1999).

    Article  CAS  Google Scholar 

  2. Lane,D. P. Exploiting the p53 pathway for cancer diagnosis and therapy. Br. J. Cancer 80, 1–5 ( 1999).

    Article  CAS  Google Scholar 

  3. Foo,S. Y. & Nolan,G. P. NF-kappaB to the rescue: RELs, apoptosis and cellular transformation. Trends Genet. 15, 229–235 (1999).

    Article  CAS  Google Scholar 

  4. Karin,M. The beginning of the end: IκB kinase (IKK) and NFκB activation. J. Biol. Chem. 274, 27339–27342 (1999).

    Article  CAS  Google Scholar 

  5. Ghoda,L., Lin,X. & Greene,W. C. The 90-kDa ribosomal S6 kinase (pp90rsk) phosphorylated the N-terminal regulatory domain of IκBα and stimulates its degradation in vitro. J. Biol. Chem. 272 , 21281–21288 (1997).

    Article  CAS  Google Scholar 

  6. Schouten,G. J. et al. IκBα is a target for the mitogen-activated 90 kDa ribosonal S6 kinse. EMBO J. 16, 3133-3144 (1997).

    Article  Google Scholar 

  7. Chen,X., Ko,L. J., Jayaraman,L. & Prives,C. p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev. 10, 2438– 2451 (1996).

    Article  CAS  Google Scholar 

  8. Kessis,T. D. et al. Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage. Proc. Natl Acad. Sci. USA 90, 3988–3992 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Ryan,K. M. & Vousden,K. H. Characterization of structural p53 mutants which show selective defects in apoptosis, but not cell cycle arrest. Mol. Cell. Biol. 18, 3692– 3698 (1998).

    Article  CAS  Google Scholar 

  10. Ashkenazi,A. & Dixit,V. M. Death receptors: signalling and modulation. Science 281, 1305– 1308 (1998).

    Article  CAS  Google Scholar 

  11. Zhou,Q. et al. Interaction of the baculovirus anti-apoptotic protein p35 with caspases. Specificity, kinetics, and characterization of the caspase/p35 complex. Biochemistry 37, 10757–10765 (1998).

    Article  CAS  Google Scholar 

  12. Adams,J. M. & Cory,S. The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322– 1326 (1998).

    Article  CAS  Google Scholar 

  13. Chiou,S. K., Rao,L. & White,E. Bcl-2 blocks p53-dependent apoptosis. Mol. Cell. Biol. 14, 2556–2563 (1994).

    Article  Google Scholar 

  14. Brown,K., Gerstberger,S., Carlson,L., Franzoso,G. & Siebenlist,U. Control of IκBα proteolysis by site-specific, signal-induced phosphorylation. Science 267, 1485–1491 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Whiteside,S. T. et al. N- and C-terminal sequences control degradation of MAD3/Ikappa B alpha in response to inducers of NF-kappa B activity. Mol. Cell. Biol. 15, 5339–5345 ( 1995).

    Article  CAS  Google Scholar 

  16. Hickman,E. S., Bates,S. & Vousden,K. H. Perturbation of the p53 response by human papillomavirus type16 E7. J. Virol. 71, 3710– 3718 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu,H. & Lozano,G. NF-kappaB activation of p53. A potential mechanism for suppressing cell growth in response to stress. J. Biol. Chem. 269, 20067–20074 (1994).

    CAS  PubMed  Google Scholar 

  18. Kirch,H. C., Flaswinkel,S., Rumpf,H., Brockmann,D. & Esche, H. Expression of human p53 requires synergistic activation of transcription from the p53 promoter by AP-1, NF-kappaB and Myc/Max. Oncogene 18, 2728–2738 ( 1999).

    Article  CAS  Google Scholar 

  19. Webster,G. A. & Perkins,N. D. Transcriptional cross talk between NF-kappaB and p53. Mol. Cell. Biol. 19, 3485–3495 (1999).

    Article  CAS  Google Scholar 

  20. Beg,A. A., Sha,W. C., Bronson,R. T., Ghosh,S. & Baltimore, D. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature 376, 167–170 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Lowe,S. W., Ruley,H. E., Jacks,T. & Housman,D. E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957–967 ( 1993).

    Article  CAS  Google Scholar 

  22. Shao,R. et al. E1A sensitizes cells to tumor necrosis factor-induced apoptosis through inhibition of IκB kinases and nuclear factor κB activities. J. Biol. Chem. 274, 21495– 21498 (1999).

    Article  CAS  Google Scholar 

  23. Samuelson,A. V. & Lowe,S. W. Selective induction of p53 and chemosensitivity in RB-deficient cells by E1A mutants unable to binf the RB-related proteins. Proc. Natl Acad. Sci. USA 94, 12094–12099 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Malinin,N. L., Boldin,M. P., B., Kovalenko,A. V. & Wallach, D. MAP3K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1. Nature 385, 540– 544 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Dudley,D. T., Pang,L., Decker,S. J., Bridges,A. J. & Saltiel, A. R. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc. Natl Acad. Sci. USA 92, 7686–7689 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Phillips,A. C., Ernst,M. K., Bates,S., Rice,N. R. & Vousden, K. H. E2F-1 potentiates cell death by blocking anti-apoptotic signalling pathways. Mol. Cell 4, 771– 781 (1999).

    Article  CAS  Google Scholar 

  27. Waddick,K. G. & Uckun,F. M. Innovative treatment programs against cancer II. Nuclear factor-kappa (NF-kappaB) as a molecular target. Biochem. Pharmacol. 57, 9–17 (1999).

    Article  CAS  Google Scholar 

  28. Song,H. Y., Regnier,C. H., Kirschning, C. J., Goeddel,D. V. & Rothe,M. Tumor necrosis factor (TNF)-mediated kinase cascades: birfurcation of nuclear factor-kappa and c-jun N-terminal kinase (JNK/SAPK) pathways at TNF receptor-associated factor 2. Proc. Natl Acad. Sci. USA 94, 9792– 9796 (1999).

    Article  ADS  Google Scholar 

  29. Phillips,A. C., Bates,S., Ryan,K. M., Helin,K. & Vousden,K. H. Induction of DNA synthesis and apoptosis are separable functions of E2F-1. Genes Dev. 11, 1853– 1863 (1997).

    Article  CAS  Google Scholar 

  30. Ernst,M. K., Dunn,L. L. & Rice,N. R. The PEST-like sequence of I kappa B alpha is responsible for inibition of DNA binding bit not for cytoplasmic retention of c-Rel or RelA homodimers. Mol. Cell. Biol. 15, 872 –882 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Phillips, M. Dobrovolskaia and D. Woods for helpful discussion. We thank C. Rosen, G. Nunez, A. Israel and E. Harlow for plasmids, and D. Baltimore for the p65-deficient MEFs. We are also indebted to S. Lowe for providing us with E1A-expressing retroviruses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen H. Vousden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryan, K., Ernst, M., Rice, N. et al. Role of NF-κB in p53-mediated programmed cell death. Nature 404, 892–897 (2000). https://doi.org/10.1038/35009130

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35009130

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing