Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Impaired febrile response in mice lacking the prostaglandin E receptor subtype EP3

Abstract

Fever, a hallmark of disease, is elicited by exogenous pyrogens, that is, cellular components, such as lipopolysaccharide (LPS), of infectious organisms, as well as by non-infectious inflammatory insults. Both stimulate the production of cytokines, such as interleukin (IL)-1β, that act on the brain as endogenous pyrogens1. Fever can be suppressed by aspirin-like anti-inflammatory drugs. As these drugs share the ability to inhibit prostaglandin biosynthesis2, it is thought that a prostaglandin is important in fever generation. Prostaglandin E2 (PGE2) may be a neural mediator of fever3, but this has been much debated1,4,5,6,7. PGE2 acts by interacting with four subtypes of PGE receptor, the EP1, EP2, EP3 and EP4 receptors8. Here we generate mice lacking each of these receptors by homologous recombination. Only mice lacking the EP3 receptor fail to show a febrile response to PGE2 and to either IL-1β or LPS. Our results establish that PGE2 mediates fever generation in response to both exogenous and endogenous pyrogens by acting at the EP3 receptor.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted disruption of the EP1 and EP3 receptor genes.
Figure 2: Effects of PGE2 on body temperature in wild-type and receptor-deficient mice.
Figure 3: Loss of the IL-1β-induced febrile response in EP3-receptor-deficient mice.
Figure 4: Responses to LPS in N4 mice lacking the EP1 or EP3 receptor.

Similar content being viewed by others

References

  1. Kluger, M. J. Fever: role of pyrogens and cryogens. Physiol. Rev. 71, 93–127 (1991).

    Article  CAS  Google Scholar 

  2. Vane, J. R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature New Biol. 231, 232–235 (1971).

    Article  CAS  Google Scholar 

  3. Milton, A. S. & Wendlandt, S. Apossible role for prostaglandin E1as a modulator for temperature regulation in the central nervous system of the cat. J. Physiol. (Lond.) 207, 76P–77P (1970).

    Google Scholar 

  4. Stitt, J. T. Prostaglandin E as the neural mediator of the febrile response. Yale. J. Biol. Med. 59, 137–149 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mitchell, D.et al. Is prostaglandin E the neural mediator of the febrile response? The case against a proven obligatory role. Yale J. Biol. Med. 59, 159–168 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Milton, A. S. Thermoregulatory actions of eicosanoids in the central nervous system with particular regard to the pathogenesis of fever. Ann. NY Acad. Sci. 559, 392–410 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Saper, C. B. & Breder, C. D. The neurologic basis of fever. N. Engl. J. Med. 330, 1880–1886 (1994).

    Article  CAS  Google Scholar 

  8. Ushikubi, F., Hirata, M. & Narumiya, S. Molecular biology of prostanoid receptors: an overview. J. Lipin Mediat. 12, 343–359 (1995).

    CAS  Google Scholar 

  9. Segi, E.et al. Patent ductus arteriosus and neonatal death in prostaglandin receptor EP4-deficient mice. Biochem. Biophys. Res. Commun. 246, 7–12 (1998).

    Article  CAS  Google Scholar 

  10. Nguyen, M. T.et al. The prostaglandin receptor EP4triggers remodelling of the cardiovascular system at birth. Nature 390, 78–81 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Cranston, W. I.et al. Evidence that brain prostaglandin synthesis is not essential in fever. J. Physiol. (Lond.) 259, 239–249 (1976).

    Article  CAS  Google Scholar 

  12. Zheng, H.et al. Resistance to fever induction and impaired acute-phase response in interleukin-1β-deficient mice. Immunity 3, 9–19 (1995).

    Article  CAS  Google Scholar 

  13. Kozak, W.et al. Thermal and behavioral effects of lipopolysaccharide and influenza in interleukin-1β-deficient mice. Am. J. Physiol. 269, R969–R977 (1995).

    Article  CAS  Google Scholar 

  14. Davatelis, G.et al. Macrophage inflammatory protein-1: a prostaglandin-independent endogenous pyrogen. Science 243, 1066–1068 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Zampronio, A. R.et al. Interleukin-8 induces fever by a prostaglandin-independent mechanism. Am. J. Physiol. 266, R1670–R1674 (1994).

    CAS  PubMed  Google Scholar 

  16. Bishai, I., Dinarello, C. A. & Coceani, F. Prostaglandin formation in feline cerebral microvessels: effect of endotoxin and interleukin-1. Can. J. Physiol. Pharmacol. 65, 2225–2230 (1987).

    Article  CAS  Google Scholar 

  17. Di Pauli, R. Genetics of the immune response. I. Differences in the specificity of antibodies to lipopolysaccharides among different strains of mice. J. Immunol. 109, 394–400 (1972).

    CAS  PubMed  Google Scholar 

  18. Meng, F. & Lowell, C. A. Lipopolysaccharide (LPS)-induced macrophage activation and signal transduction in the absence of Src-family kinases Hck, Fgr, and Lyn. J. Exp. Med. 185, 1661–1670 (1997).

    Article  CAS  Google Scholar 

  19. Morley, R. M., Conn, C. A., Kluger, M. J. & Vander, A. J. Temperature regulation in biotelemetered spontaneously hypertensive rats. Am. J. Physiol. 258, R1064–R1069 (1990).

    CAS  PubMed  Google Scholar 

  20. Alexander, S. J., Cooper, K. E. & Veale, W. L. Sodium salicylate: alternate mechanism of central antipyretic action in the rat. Pflugers Arch. 413, 451–455 (1989).

    Article  CAS  Google Scholar 

  21. Kiriyama, M.et al. Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chinese hamster ovary cells. Br. J. Pharmacol. 122, 217–224 (1997).

    Article  CAS  Google Scholar 

  22. Sugimoto, Y.et al. Distribution of the messenger RNA for the prostaglandin E receptor subtype EP3in the mouse nervous system. Neuroscience 62, 919–928 (1994).

    Article  CAS  Google Scholar 

  23. Toh, H., Ichikawa, A. & Narumiya, S. Molecular evolution of receptors for eicosanoids. FEBS Lett. 361, 17–21 (1995).

    Article  CAS  Google Scholar 

  24. Katsuura, G., Arimura, A., Koves, K. & Gottschall, P. E. Involvement of organum vasculosum of lamina terminalis and preoptic area in interleukin 1β-induced ACTH release. Am. J. Physiol. 258, E163–E171 (1990).

    CAS  PubMed  Google Scholar 

  25. Murata, T.et al. Altered pain perception and inflammatory response in mice lacking prostacyclin receptor. Nature 388, 678–682 (1997).

    Article  ADS  CAS  Google Scholar 

  26. Sugimoto, Y.et al. Failure of parturition in mice lacking the prostaglandin F receptor. Science 277, 681–683 (1997).

    Article  CAS  Google Scholar 

  27. Kawabe, T.et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1, 167–178 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Kataoka and K. Ishikawa for injection of embryonic stem cells, K.Takahashi for animal breeding, and K. Okuyama and T. Arai for secretarial assistance. This work was supported by grants-in-aid from the Ministry of Education, Science, Sports and Culture of Japan and from the Ministry of Health and Welfare of Japan, and by grants from the Uehara Memorial Foundation, the Smoking Research Foundation and the Japanese Foundation on Metabolism and Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuh Narumiya.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ushikubi, F., Segi, E., Sugimoto, Y. et al. Impaired febrile response in mice lacking the prostaglandin E receptor subtype EP3. Nature 395, 281–284 (1998). https://doi.org/10.1038/26233

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/26233

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing