Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of telomerase limits the growth of human cancer cells

Abstract

Telomerase is a ribonucleoprotein enzyme that maintains the protective structures at the ends of eukaryotic chromosomes, called telomeres. In most human somatic cells, telomerase expression is repressed, and telomeres shorten progressively with each cell division. In contrast, most human tumors express telomerase, resulting in stabilized telomere length. These observations indicate that telomere maintenance is essential to the proliferation of tumor cells. We show here that expression of a mutant catalytic subunit of human telomerase results in complete inhibition of telomerase activity, reduction in telomere length and death of tumor cells. Moreover, expression of this mutant telomerase eliminated tumorigenicity in vivo. These observations demonstrate that disruption of telomere maintenance limits cellular lifespan in human cancer cells, thus validating human telomerase reverse transcriptase as an important target for the development of anti-neoplastic therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of WT-hTERT and DN-TERT in immortalized cell lines.
Figure 2: Effects of WT-hTERT and DN-hTERT on telomerase activity.
Figure 3: Effects of DN-hTERT expression on telomere length.
Figure 4: Effects of DN-hTERT on cell proliferation.
Figure 5: Expression of DN-hTERT induces apoptosis.

Similar content being viewed by others

References

  1. Hayflick, L. & Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell. Res. 25, 585–621 (1961).

    Article  CAS  Google Scholar 

  2. Shay, J.W., Wright, W.E. & Werbin, H. Defining the molecular mechanisms of human cell immortalization. Biochim. Biophys. Acta 1072, 1– 7 (1991).

    CAS  PubMed  Google Scholar 

  3. Brown, J.P., Wei, W. & Sedivy, J.M. Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277 , 831–834 (1997).

    Article  CAS  Google Scholar 

  4. Sager, R. Senescence as a mode of tumor suppression. Environ. Health Perspect. 93, 59–62 ( 1991).

    Article  CAS  Google Scholar 

  5. Harley, C.B. et al. Telomerase, cell immortality, and cancer. Cold Spring Harb. Symp. Quant. Biol. 59, 307– 315 (1994).

    Article  CAS  Google Scholar 

  6. Harley, C.B., Futcher, A.B. & Greider, C.W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).

    Article  CAS  Google Scholar 

  7. Hastie, N.D. et al. Telomere reduction in human colorectal carcinoma and with ageing. Nature 346, 866– 868 (1990).

    Article  CAS  Google Scholar 

  8. Blasco, M.A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25– 34 (1997).

    Article  CAS  Google Scholar 

  9. Hande, M.P., Samper, E., Lansdorp, P. & Blasco, M.A. Telomere length dynamics and chromosomal instability in cells derived from telomerase null mice. J. Cell. Biol. 144, 589– 601 (1999).

    Article  CAS  Google Scholar 

  10. Counter, C.M. et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929 ( 1992).

    Article  CAS  Google Scholar 

  11. Counter, C.M., Hirte, H.W., Bacchetti, S. & Harley, C.B. Telomerase activity in human ovarian carcinoma. Proc. Natl. Acad. Sci. USA 91, 2900–2904 ( 1994).

    Article  CAS  Google Scholar 

  12. Morales, C.P. et al. Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nature Genet. 21, 115–118 (1999).

    Article  CAS  Google Scholar 

  13. Greider, C.W. in Telomeres (eds. Blackburn, E.H. & Greider, C.W.) 35– 68 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1995).

    Google Scholar 

  14. Feng, J. et al. The RNA component of human telomerase. Science 269, 1236–1241 (1995).

    Article  CAS  Google Scholar 

  15. Nakamura, T.M. et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955– 959 (1997).

    Article  CAS  Google Scholar 

  16. Meyerson, M. et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90, 785–795 ( 1997).

    Article  CAS  Google Scholar 

  17. Harrington, L. et al. Human telomerase contains evolutionarily conserved catalytic and structural subunits. Genes Dev. 11, 3109–3115 (1997).

    Article  CAS  Google Scholar 

  18. Kilian, A. et al. Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types. Hum. Mol. Genet. 6, 2011–2019 (1997).

    Article  CAS  Google Scholar 

  19. Nakayama, J. et al. Telomerase activation by hTRT in human normal fibroblasts and hepatocellular carcinomas. Nature Genet. 18, 65–68 (1998).

    Article  CAS  Google Scholar 

  20. Kim, N.W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011– 2015 (1994).

    Article  CAS  Google Scholar 

  21. Ramakrishnan, S., Eppenberger, U., Mueller, H., Shinkai, Y. & Narayanan, R. Expression profile of the putative catalytic subunit of the telomerase gene. Cancer Res. 58, 622–625 (1998).

    CAS  PubMed  Google Scholar 

  22. Bodnar, A.G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349– 352 (1998).

    Article  CAS  Google Scholar 

  23. Vaziri, H. & Benchimol, S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol. 8, 279– 282 (1998).

    Article  CAS  Google Scholar 

  24. Counter, C.M. et al. Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization. Proc. Natl. Acad. Sci. USA 95, 14723–14728 ( 1998).

    Article  CAS  Google Scholar 

  25. Halvorsen, T.L., Leibowitz, G. & Levine, F. Telomerase activity is sufficient to allow transformed cells to escape from crisis. Mol. Cell. Biol. 19, 1864–1870 (1999).

    Article  CAS  Google Scholar 

  26. Zhu, J., Wang, H., Bishop, J.M. & Blackburn, E.H. Telomerase extends the lifespan of virus-transformed human cells without net telomere lengthening. Proc. Natl. Acad. Sci. USA 96, 3723–3728 (1999).

    Article  CAS  Google Scholar 

  27. Hahn, W.C. et al. Creation of human tumor cells with defined genetic elements. Nature 400; 464–468 (1999).

    Article  CAS  Google Scholar 

  28. Shay, J.W. & Bacchetti, S. A survey of telomerase activity in human cancer. Eur. J. Cancer 33, 787– 791 (1997).

    Article  CAS  Google Scholar 

  29. Nakamura, T.M. & Cech, T.R. Reversing time: origin of telomerase. Cell 92, 587– 590 (1998).

    Article  CAS  Google Scholar 

  30. Counter, C.M., Meyerson, M., Eaton, E.N. & Weinberg, R.A. The catalytic subunit of yeast telomerase. Proc. Natl. Acad. Sci. USA 94, 9202–9207 ( 1997).

    Article  CAS  Google Scholar 

  31. Lingner, J. et al. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276, 561– 567 (1997).

    Article  CAS  Google Scholar 

  32. Weinrich, S.L. et al. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nature Genet. 17, 498–502 ( 1997).

    Article  CAS  Google Scholar 

  33. Stewart, N. & Bacchetti, S. Expression of SV40 large T antigen, but not small t antigen, is required for the induction of chromosomal aberrations in transformed human cells. Virology 180, 49–57 (1991).

    Article  CAS  Google Scholar 

  34. Reddel, R.R., Bryan, T.M. & Murnane, J.P. Immortalized cells with no detectable telomerase activity. A review. Biochemistry (Mosc.) 62, 1254– 1262 (1997).

    CAS  Google Scholar 

  35. Counter, C.M., Botelho, F.M., Wang, P., Harley, C.B. & Bacchetti, S. Stabilization of short telomeres and telomerase activity accompany immortalization of Epstein-Barr virus-transformed human B lymphocytes. J. Virol. 68, 3410–3414 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Rufer, N., Dragowska, W., Thornbury, G., Roosnek, E. & Lansdorp, P.M. Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry. Nature Biotechnol. 16, 743–747 ( 1998).

    Article  CAS  Google Scholar 

  37. Goi, K. et al. DNA damage-associated dysregulation of the cell cycle and apoptosis control in cells with germ-line p53 mutation. Cancer Res 57, 1895–1902 (1997).

    CAS  PubMed  Google Scholar 

  38. Karlseder, J., Broccoli, D., Dai, Y., Hardy, S. & de Lange, T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283, 1321– 1325 (1999).

    Article  CAS  Google Scholar 

  39. Strobel, T., Tai, Y.-T., Korsmeyer, S. & Cannistra, S.A. BAD partly reverses paclitaxel resistance in human ovarian carcinoma cells. Oncogene 17, 2419–2427 (1998).

    Article  CAS  Google Scholar 

  40. Kastan, M.B. et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71, 587–597 (1992).

    Article  CAS  Google Scholar 

  41. Glukhov, A.I., Zimnik, O.V., Gordeev, S.A. & Severin, S.E. Inhibition of telomerase activity of melanoma cells in vitro by antisense oligonucleotides. Biochem. Biophys. Res. Commun. 248 , 368–371 (1998).

    Article  CAS  Google Scholar 

  42. Bisoffi, M. et al. Inhibition of human telomerase by a retrovirus expressing telomeric antisense RNA. Eur. J. Cancer 34, 1242–1249 (1998).

    Article  CAS  Google Scholar 

  43. Kondo, S. et al. Antisense telomerase treatment: induction of two distinct pathways, apoptosis and differentiation. FASEB J. 12 , 801–811 (1998).

    Article  CAS  Google Scholar 

  44. Norton, J.C., Piatyszek, M.A., Wright, W.E., Shay, J.W. & Corey, D.R. Inhibition of human telomerase activity by peptide nucleic acids. Nature Biotechnol. 14, 615–619 (1996).

    Article  CAS  Google Scholar 

  45. Lundblad, V. & Blackburn, E.H. An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell 73, 347–360 (1993).

    Article  CAS  Google Scholar 

  46. Nakamura, T.M., Cooper, J.P. & Cech, T.R. Two modes of survival of fission yeast without telomerase. Science 282, 493–496 (1998).

    Article  CAS  Google Scholar 

  47. Levine, A.J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).

    Article  CAS  Google Scholar 

  48. Aas, T. et al. Specific p53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nature Med. 2, 811–814 (1996).

    Article  CAS  Google Scholar 

  49. Lowe, S.W., Ruley, H.E., Jacks, T. & Houseman, S.E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957–968 ( 1993).

    Article  CAS  Google Scholar 

  50. Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527–538 ( 1999).

    Article  CAS  Google Scholar 

  51. de Lange, T. et al. Structure and variability of human chromosome ends. Mol. Cell. Biol. 10, 518–527 (1990).

    Article  CAS  Google Scholar 

  52. Strahl, C. & Blackburn, E.H. Effects of reverse transcriptase inhibitors on telomere length and telomerase activity in two immortalized human cell lines. Mol. Cell. Biol. 16, 53 –65 (1996).

    Article  CAS  Google Scholar 

  53. Morgenstern, J.P. & Land, H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18, 3587–3596 (1990).

    Article  CAS  Google Scholar 

  54. Kim, N.W. & Wu, F. Advances in quantification and characterization of telomerase activity by the telomeric repeat amplification protocol (TRAP). Nucleic Acids Res. 25, 2595– 2597 (1997).

    Article  CAS  Google Scholar 

  55. Seabright, M. A rapid banding technique for human chromosomes. Lancet 2, 971–972 (1971).

    Article  CAS  Google Scholar 

  56. Landsdorp, P.M. et al. Heterogeneity in telomere length of human chromosomes. Hum. Mol. Genet. 5, 685– 691 (1996).

    Article  Google Scholar 

  57. Schmid, I., Uittenbogaart, C.H. & Giorgi, J.V. A gentle fixation and permeabilization method for combined cell surface and intracellular staining with improved precision in DNA quantification. Cytometry 12, 279– 285 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of R.A.W. lab for discussions, R. Sexena for assistance with pulse field electrophoresis, and A. Leff and M.A. Mastrangelo for technical assistance. This work was supported in part by Merck and Company (R.A.W.), the US National Cancer Institute (R.A.W.), a Charles E. Culpeper Biomedical Pilot Initiative Grant (R.A.W. and W.C.H.), and a Damon Runyon-Walter Winchell Cancer Research Foundation Postdoctoral Fellowship (W.C.H.), an Anna Fuller Postdoctoral Fellowship (S.A.S.), and a Human Frontiers Postdoctoral Fellowship (R.L.B.). W.C.H. is a Herman and Margaret Sokol postdoctoral fellow. R.A.W. is an American Cancer Society Research Professor and a Daniel K. Ludwig Cancer Research Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Weinberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, W., Stewart, S., Brooks, M. et al. Inhibition of telomerase limits the growth of human cancer cells. Nat Med 5, 1164–1170 (1999). https://doi.org/10.1038/13495

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/13495

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing