Skip to main content
Log in

Msx-1 and Msx-2 in Mammary Gland Development

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Homeobox genes do not generally function alone to determine cell fate and morphogenesis. Rather it is the distinct combination of various members of the homeobox family of genes and their spatiotemporal patterns of expression that determine cell identity and function. Functional redundancy often makes it difficult to clearly discern the role of any one given homeobox gene. The roles that Msx1 and Msx2 play in branching morphogenesis of the mammary gland are only now becoming more evident. Many signaling pathways and transcription factors are implicated in how these homeobox genes correctly determine the morphological development of the gland. Overexpression of Msx1 and Msx2 may also be involved in tumorigenesis. Additional studies are needed to elucidate the roles of these genes in both breast development and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Hovey RC, Trott JF, and Vonderhaar BK. Establishing a framework for the functional mammary gland: from endocrinology to morphology. J Mammary Gland Biol Neoplasia. 2002; 7: 17-38.

    PubMed  Google Scholar 

  2. Brisken C. Hormonal control of alveolar development and its implications for breast carcinogenesis. JMammary Gland Biol Neoplasia. 2002; 7: 39-48.

    Google Scholar 

  3. Neville MC, McFadden TB, and Forsyth I. Hormonal regulation of mammary differentiation and milk secretion. J Mammary Gland Biol Neoplasia. 2002; 7: 49-66.

    PubMed  Google Scholar 

  4. Chen H and Sukumar S. Role of homeobox genes in normal mammary gland development and breast tumorigenesis. J Mammary Gland Biol Neoplasia. 2003; 8: 159-75.

    PubMed  Google Scholar 

  5. Stein S, Fritsch R, Lemaire L, and Kessel M. Checklist: vertebrate homeobox genes. Mech Dev. 1996; 55: 91-108.

    PubMed  Google Scholar 

  6. Jowett AK, Vainio S, Ferguson MW, Sharpe PT, and Thesleff I. Epithelial-mesenchymal interactions are required for msx 1 and msx 2 gene expression in the developing murine molar tooth. Development. 1993; 117: 461-70.

    PubMed  Google Scholar 

  7. Wang Y and Sassoon D. Ectoderm-mesenchyme and mesenchyme-mesenchyme interactions regulate Msx-1 expression and cellular differentiation in the murine limb bud. Dev Biol. 1995; 168: 374-82.

    PubMed  Google Scholar 

  8. Lewis EB. A gene complex controlling segmentation in Drosophila. Nature. 1978; 276: 565-70.

    PubMed  Google Scholar 

  9. Friedmann Y and Daniel CW. Regulated expression of homeobox genes Msx-1 and Msx-2 in mouse mammary gland development suggests a role in hormone action and epithelial-stromal interactions. Dev Biol. 1996; 177: 347-55.

    PubMed  Google Scholar 

  10. Phippard DJ, Weber-Hall SJ, Sharpe PT, Naylor MS, Jayatalake H, Maas R, Woo I, Roberts-Clark D, Francis-West PH, Liu YH, Maxson R, Hill RE, and Dale TC. Regulation of Msx-1, Msx-2, Bmp-2 and Bmp-4 during foetal and postnatal mammary gland development. Development. 1996; 122: 2729-37.

    PubMed  Google Scholar 

  11. Krumlauf R. Hox genes in vertebrate development. Cell. 1994; 78: 191-201.

    PubMed  Google Scholar 

  12. Morgan BA, Izpisua-Belmonte JC, Duboule D, and Tabin CJ. Targeted misexpression of Hox-4.6 in the avian limb bud causes apparent homeotic transformations. Nature. 1992; 358: 236-9.

    PubMed  Google Scholar 

  13. Wolgemuth DJ, Behringer RR, Mostoller MP, Brinster RL, and Palmiter RD. Transgenic mice overexpressing the mouse homoeobox-containing gene Hox-1.4 exhibit abnormal gut development. Nature. 1989; 337: 464-7.

    PubMed  Google Scholar 

  14. Balinsky BI. On the pre-natal growth of the mammary gland rudiment in the mouse. J. Anat. 1950; 84: 227-35.

    PubMed  Google Scholar 

  15. Kratochwil K. Organ specificity in mesenchymal induction demonstrated in the embryonic development of the mammary gland of the mouse. Dev Biol. 1969; 20: 46-71.

    PubMed  Google Scholar 

  16. Sakakura T. Mammary embryogenesis. In Neville MC and Daniel CW Neville MC and Daniel CWs. The Mammary Gland: Development, Regulation, and Function. Plenum, New York, 1987. p. 37-66.

    Google Scholar 

  17. Kimata K, Sakakura T, Inaguma Y, Kato M, and Nishizuka Y. Participation of two different mesenchymes in the developing mouse mammary gland: synthesis of basement membrane components by fat pad precursor cells. J Embryol Exp Morphol. 1985; 89: 243-57.

    PubMed  Google Scholar 

  18. Atwood CS, Hovey RC, Glover JP, Chepko G, Ginsburg E, Robison WG, and Vonderhaar BK. Progesterone induces side-branching of the ductal epithelium in the mammary glands of peripubertal mice.J Endocrinol. 2000; 167: 39-52.

    PubMed  Google Scholar 

  19. Hovey RC, McFadden TB, and Akers RM. Regulation of mammary gland growth and morphogenesis by the mammary fat pad: a species comparison. J Mammary Gland Biol Neoplasia. 1999; 4: 53-68.

    PubMed  Google Scholar 

  20. Silberstein GB and Daniel CW. Glycosaminoglycans in the basal lamina and extracellular matrix of the developing mouse mammary duct. Dev Biol. 1982; 90: 215-22.

    PubMed  Google Scholar 

  21. Lochter A. Plasticity of mammary epithelia during normal development and neoplastic progression. Biochem Cell Biol. 1998; 76: 997-1008.

    PubMed  Google Scholar 

  22. Daniel CW and Silberstein G. Postnatal development of the rodent mammary gland. In Neville MC and Daniel CW. The Mammary Gland: Development, Regulation, and Function. Plenum, New York, 1987. p. 3-36.

    Google Scholar 

  23. Imagawa W, Bandyopadhyay GK, and Nandi S. Regulation of mammary epithelial cell growth in mice and rats. Endocr Rev. 1990; 11: 494-523.

    PubMed  Google Scholar 

  24. Richert MM, Schwertfeger KL, Ryder JW, and Anderson SM. An atlas of mouse mammary gland development. J Mammary Gland Biol Neoplasia. 2000; 5: 227-41.

    PubMed  Google Scholar 

  25. Daniel CW, Berger JJ, Strickland P, and Garcia R. Similar growth pattern of mouse mammary epithelium cultivated in collagen matrix in vivo and in vitro. Dev Biol. 1984; 104: 57-64.

    PubMed  Google Scholar 

  26. Nandi S. Endocrine control of mammary gland development and function in the C3H/HeCrgl mouse. J Natl Cancer Inst. 1958; 21: 1039-63.

    PubMed  Google Scholar 

  27. Vonderhaar BK. Regulation of development of the normal mammary gland by hormones and growth factors. In Lippman ME and Dickson RB. Breast Cancer: Cellular and Molecular Biology. Kluwer Academic Publishers, Boston, 1988. p. 251-66.

    Google Scholar 

  28. Bresciani F. Topography of DNA synthesis in the mammary gland of the C3H mouse and its control by ovarian hormones: an autoradiographic study. Cell Tissue Kinet. 1968; 1: 51-63.

    Google Scholar 

  29. Haslam SZ. Progesterone effects on deoxyribonucleic acid synthesis in normal mouse mammary glands. Endocrinology. 1988; 122: 464-70.

    PubMed  Google Scholar 

  30. Hovey RC, Trott JF, Ginsburg E, Goldhar A, Sasaki MM, Fountain SJ, Sundararajan K, and Vonderhaar BK. Transcriptional and spatiotemporal regulation of prolactin receptor mRNA and cooperativity with progesterone receptor function during ductal branch growth in the mammary gland. Dev Dyn. 2001; 222: 192-205.

    PubMed  Google Scholar 

  31. Satoh K, Hovey RC, Malewski T, Lydon JP, Warri A, Saito K, Goldhar A, Ginsburg E, and Vonderhaar BK. Progesterone induction of Msx2 expression enhances branching morphogenesis in mouse mammary epithelial cells. Oncogene. 2004; submitted.

  32. Satokata I, Ma L, Ohshima H, Bei M, Woo I, Nishizawa K, Maeda T, Takano Y, Uchiyama M, Heaney S, Peters H, Tang Z, Maxson R, and Maas R. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet. 2000; 24: 391-5.

    PubMed  Google Scholar 

  33. Hu G, Lee H, Price SM, Shen MM, and Abate-Shen C. Msx homeobox genes inhibit differentiation through upregulation of cyclin D1. Development. 2001; 128: 2373-84.

    PubMed  Google Scholar 

  34. Brisken C, Heineman A, Chavarria T, Elenbaas B, Tan J, Dey SK, McMahon JA, McMahon AP, and Weinberg RA. Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev. 2000; 14: 650-4.

    PubMed  Google Scholar 

  35. Zeps N, Bentel JM, Papadimitriou JM, and Dawkins HJ. Murine progesterone receptor expression in proliferating mammary epithelial cells during normal pubertal development and adult estrous cycle.Association with ERalpha and ERbeta status. J Histochem Cytochem. 1999; 47: 1323-30.

    PubMed  Google Scholar 

  36. Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery CAJ, Shyamala G, Conneely OM, and O'Malley BW. Mice lacking progesterone receptor exhibit pleiotrophic reproductive abnormalities. Genes Dev. 1995; 9: 2266-78.

    PubMed  Google Scholar 

  37. Brisken C, Park S, Vass T, Lydon JP, O'Malley BW, and Weinberg RA.Aparacrine role for the epithelial progesterone receptor in mammary gland development. Proc Natl Acad Sci U S A. 1998; 95: 5076-81.

    PubMed  Google Scholar 

  38. Shyamala G, Yang X, Silberstein G, Barcellos-Hoff MH, and Dale E. Transgenic mice carrying an imbalance in the native ratio of A to B forms of progesterone receptor exhibit developmental abnormalities in mammary glands. Proc Natl Acad Sci U S A. 1998; 95: 696-701.

    PubMed  Google Scholar 

  39. Shyamala G, Yang X, Cardiff RD, and Dale E. Impact of progesterone receptor on cell-fate decisions during mammary gland development. Proc Natl Acad Sci USA. 2000; 97: 3044-9.

    PubMed  Google Scholar 

  40. Richer JK, Jacobsen BM, Manning NG, Abel MG, Wolf DM, and Horwitz KB. Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. J Biol Chem. 2002; 277: 5209-18.

    PubMed  Google Scholar 

  41. Qin C, Singh P, and Safe S. Transcriptional activation of insulinlike growth factor-binding protein-4 by 17beta-estradiol in MCF-7 cells: role of estrogen receptor-Sp1 complexes. Endocrinology. 1999; 140: 2501-8.

    PubMed  Google Scholar 

  42. Duan R, Porter W, and Safe S. Estrogen-induced c-fos protooncogene expression in MCF-7 human breast cancer cells: role of estrogen receptor Sp1 complex formation. Endocrinology. 1998; 139: 1981-90.

    PubMed  Google Scholar 

  43. Xie W, Duan R, and Safe S. Estrogen induces adenosine deaminase gene expression in MCF-7 human breast cancer cells: role of estrogen receptor-Sp1 interactions. Endocrinology. 1999; 140: 219-27.

    PubMed  Google Scholar 

  44. Owen GI, Richer JK, Tung L, Takimoto G, and Horwitz KB. Progesterone regulates transcription of the p21(WAF1) cyclindependent kinase inhibitor gene through Sp1 and CBP/p300. J Biol Chem. 1998; 273: 10696-701.

    PubMed  Google Scholar 

  45. Satokata I and Maas R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet. 1994; 6: 348-56.

    PubMed  Google Scholar 

  46. Lewis MT, Ross S, Strickland PA, Sugnet CW, Jimenez E, Scott MP, and Daniel CW. Defects in mouse mammary gland development caused by conditional haploinsufficiency of Patched-1. Development. 1999; 126: 5181-93.

    PubMed  Google Scholar 

  47. Wiesen JF, Young P, Werb Z, and Cunha GR. Signaling through the stromal epidermal growth factor receptor is necessary for mammary ductal development. Development. 1999; 126: 335-44.

    PubMed  Google Scholar 

  48. Sarapura VD, Strouth HL, Gordon DF, Wood WM, and Ridgway EC. Msx1 is present in thyrotropic cells and binds to a consensus site on the glycoprotein hormone alpha-subunit promoter. Mol Endocrinol. 1997; 11: 1782-94.

    PubMed  Google Scholar 

  49. Shetty S, Takahashi T, Matsui H, Ayengar R, and Raghow R. Transcriptional autorepression of Msx1 gene is mediated by interactions of Msx1 protein with a multi-protein transcriptional complex containing TATA-binding protein, Sp1 and cAMP-response-element-binding proteinbinding protein (CBP/p300). Biochem J. 1999; 339 ( Pt 3): 751-8.

    PubMed  Google Scholar 

  50. Adhikary S, Peukert K, Karsunky H, Beuger V, Lutz W, Elsasser HP, Moroy T, and Eilers M. Miz1 is required for early embryonic development during gastrulation. Mol Cell Biol. 2003; 23: 7648-57.

    PubMed  Google Scholar 

  51. Wu L, Wu H, Ma L, Sangiorgi F, Wu N, Bell JR, Lyons GE, and Maxson R. Miz1, a novel zinc finger transcription factor that interacts with Msx2 and enhances its affinity for DNA. Mech Dev. 1997; 65: 3-17.

    PubMed  Google Scholar 

  52. Barnes GL, Javed A, Waller SM, Kamal MH, Hebert KE, Hassan MQ, Bellahcene A, Van Wijnen AJ, Young MF, Lian JB, Stein GS, and Gerstenfeld LC. Osteoblast-related transcription factors Runx2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. Cancer Res. 2003; 63: 2631-7.

    PubMed  Google Scholar 

  53. Fu SW, Schwartz A, Stevenson H, Pinzone JJ, Davenport GJ, Orenstein JM, Gutierrez P, Simmens SJ, Abraham J, Poola I, Stephan DA, and Berg PE. Correlation of expression of BP1, a homeobox gene, with estrogen receptor status in breast cancer. Breast Cancer Res. 2003; 5: R82-7.

    PubMed  Google Scholar 

  54. Newberry EP, Latifi T, and Towler DA. Reciprocal regulation of osteocalcin transcription by the homeodomain proteins Msx2 and Dlx5. Biochemistry. 1998; 37: 16360-8.

    PubMed  Google Scholar 

  55. Catron KM, Iler N, and Abate C. Nucleotides flanking a conserved TAAT core dictate the DNA binding specificity of Msx Genes in Mammary Development 205 three murine homeodomain proteins. Mol Cell Biol. 1993; 13: 2354-65.

    PubMed  Google Scholar 

  56. Chisaka O and Capecchi MR. Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox-1.5. Nature. 1991; 350: 473-9.

    PubMed  Google Scholar 

  57. Porter FD, Drago J, XuY, Cheema SS, Wassif C, Huang SP, Lee E, Grinberg A, Massalas JS, Bodine D, Alt F, and Westphal H.Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development. 1997; 124: 2935-44.

    PubMed  Google Scholar 

  58. Lu CH, Rincon-Limas DE, and Botas J. Conserved overlapping and reciprocal expression of msh/Msx1 and apterous/Lhx2 in Drosophila and mice. Mech Dev. 2000; 99: 177-81.

    PubMed  Google Scholar 

  59. Bendall AJ, Rincon-Limas DE, Botas J, and Abate-Shen C. Protein complex formation between Msx1 and Lhx2 homeoproteins is incompatible with DNA binding activity.Differentiation. 1998; 63: 151-7.

    PubMed  Google Scholar 

  60. Sherr CJ. G1 phase progression: cycling on cue. Cell. 1994; 79: 551-5.

    PubMed  Google Scholar 

  61. Sherr CJ. Growth factor-regulated G1 cyclins. Stem Cells. 1994; 12 Suppl 1: 47-55; discussion-7.

    PubMed  Google Scholar 

  62. Altucci L, Addeo R, Cicatiello L, Dauvois S, Parker MG, Truss M, Beato M, Sica V, Bresciani F, and Weisz A. 17beta-Estradiol induces cyclin D1 gene transcription, p36D1-p34cdk4 complex activation and p105Rb phosphorylation during mitogenic stimulation of G(1)-arrested human breast cancer cells. Oncogene. 1996; 12: 2315-24.

    PubMed  Google Scholar 

  63. Said TK, Conneely OM, Medina D, O'Malley BW, and Lydon JP. Progesterone, in addition to estrogen, induces cyclin D1 expression in the murine mammary epithelial cell, in vivo. Endocrinology. 1997; 138: 3933-9.

    PubMed  Google Scholar 

  64. Inman CK and Shore P. The osteoblast transcription factor Runx2 is expressed in mammary epithelial cells and mediates osteopontin expression. J Biol Chem. 2003; 278: 48684-9.

    PubMed  Google Scholar 

  65. Silberstein GB, Dressler GR, and Van Horn K. Expression of the PAX2 oncogene in human breast cancer and its role in progesterone-dependent mammary growth. Oncogene. 2002; 21: 1009-16.

    PubMed  Google Scholar 

  66. Kwang SJ, Brugger SM, Lazik A, Merrill AE, Wu LY, Liu YH, Ishii M, Sangiorgi FO, Rauchman M, Sucov HM, Maas RL, and Maxson RE, Jr. Msx2 is an immediate downstream effector of Pax3 in the development of the murine cardiac neural crest. Development. 2002; 129: 527-38.

    PubMed  Google Scholar 

  67. Willert J, Epping M, Pollack JR, Brown PO, and Nusse R. A transcriptional response to Wnt protein in human embryonic carcinoma cells. BMC Dev Biol. 2002; 2: 8.

    PubMed  Google Scholar 

  68. Balemans Wand Van Hul W. Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators. Dev Biol. 2002; 250: 231-50.

    PubMed  Google Scholar 

  69. Dunn NR, Winnier GE, Hargett LK, Schrick JJ, Fogo AB, and Hogan BL. Haploinsufficient phenotypes in Bmp4 heterozygous null mice and modification by mutations in Gli3 and Alx4. Dev Biol. 1997; 188: 235-47.

    PubMed  Google Scholar 

  70. Vainio S, Karavanova I, Jowett A, and Thesleff I. Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell. 1993; 75: 45-58.

    PubMed  Google Scholar 

  71. Alvarez Martinez CE, Binato R, Gonzalez S, Pereira M, Robert B, and Abdelhay E. Characterization of a Smad motif similar to Drosophila mad in the mouse Msx 1 promoter. Biochem Biophys Res Commun. 2002; 291: 655-62.

    PubMed  Google Scholar 

  72. Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, and Schmidt EV. Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature. 1994; 369: 669-71.

    PubMed  Google Scholar 

  73. Abate-Shen C. Deregulated homeobox gene expression in cancer: cause or consequence? Nat Rev Cancer. 2002; 2: 777-85.

    PubMed  Google Scholar 

  74. Suzuki M, Tanaka M, Iwase T, Naito Y, Sugimura H, and Kino I. Over-expression of HOX-8, the human homologue of the mouse Hox-8 homeobox gene, in human tumors. Biochem Biophys Res Commun. 1993; 194: 187-93.

    PubMed  Google Scholar 

  75. Takahashi C, Akiyama N, Matsuzaki T, Takai S, Kitayama H, and Noda M. Characterization of a human MSX-2 cDNA and its fragment isolated as a transformation suppressor gene against v-Ki-ras oncogene. Oncogene. 1996; 12: 2137-46.

    PubMed  Google Scholar 

  76. Takahashi C, Akiyama N, Kitayama H, Takai S, and Noda M.Possible involvement of MSX-2 homeoprotein in v-ras-induced transformation. Leukemia. 1997; 11 Suppl 3: 340-3.

    PubMed  Google Scholar 

  77. Buckley MF, Sweeney KJ, Hamilton JA, Sini RL, Manning DL, Nicholson RI, deFazio A, Watts CK, Musgrove EA, and Sutherland RL. Expression and amplification of cyclin genes in human breast cancer. Oncogene. 1993; 8: 2127-33.

    PubMed  Google Scholar 

  78. Nielsen NH, Arnerlov C, Emdin SO, and Landberg G. Cyclin E overexpression, a negative prognostic factor in breast cancer with strong correlation to oestrogen receptor status. Br J Cancer. 1996; 74: 874-80.

    PubMed  Google Scholar 

  79. Porter PL, Malone KE, Heagerty PJ, Alexander GM, Gatti LA, Firpo EJ, Daling JR, and Roberts JM. Expression of cell-cycle regulators p27Kip1 and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nat Med. 1997; 3: 222-5.

    PubMed  Google Scholar 

  80. Kenny FS, Hui R, Musgrove EA, Gee JM, Blamey RW, Nicholson RI, Sutherland RL, and Robertson JF. Overexpression of cyclin D1 messenger RNA predicts for poor prognosis in estrogen receptor-positive breast cancer. Clin Cancer Res. 1999; 5: 2069-76.

    PubMed  Google Scholar 

  81. David G, Van der Schueren B, and Bernfield M. Basal lamina formation by normal and transformed mouse mammary epithelial cells duplicated in vitro. J Natl Cancer Inst. 1981; 67: 719-28.

    PubMed  Google Scholar 

  82. Hynes NE, Jaggi R, Kozma SC, Ball R, Muellener D, Wetherall NT, Davis BW, and Groner B. New acceptor cell for transfected genomic DNA: oncogene transfer into a mouse mammary epithelial cell line. Mol Cell Biol. 1985; 5: 268-72.

    PubMed  Google Scholar 

  83. Van den Broecke C, Vleminckx K, De Bruyne G, Van Hoorde L, Vakaet L, Van Roy F, and Mareel M. Morphotypic plasticity in vitro and in nude mice of epithelial mouse mammary cells (NMuMG) displaying an epithelioid (e) or a fibroblastic (f) morphotype in culture. Clin Exp Metastasis. 1996; 14: 282-96.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satoh, K., Ginsburg, E. & Vonderhaar, B.K. Msx-1 and Msx-2 in Mammary Gland Development. J Mammary Gland Biol Neoplasia 9, 195–205 (2004). https://doi.org/10.1023/B:JOMG.0000037162.84758.b5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMG.0000037162.84758.b5

Navigation