Skip to main content
Log in

Nodal and Cripto-1: Embryonic Pattern Formation Genes Involved in Mammary Gland Development and Tumorigenesis

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Members of the TGFβ superfamily and EGF-CFC family, such as Nodal and Cripto, are important mediators of anterior-posterior and left-right axis specification during embryogenesis. In this paper, we review the role of Nodal and Cripto as critical morphogen-like molecules, with an emphasis on Nodal and EGF-CFC signaling during embryonic pattern formation. New evidence from gene expression and transgenic mouse studies have shown that both Nodal and Cripto-1 are expressed within the mammary duct and that modulation of these genes can disrupt normal branching morphogenesis resulting in epithelial disorganization and defective ductal architecture. We describe these new findings and propose that Cripto and Nodal are candidate mammary morphogens. Finally, the data linking overexpression of Cripto and perturbations of Cripto signaling to cell transformation and tumor formation are discussed. The fact that Cripto can modulate multiple pathways suggests it may act to deregulate growth inhibitors/homeostasis factors early in the cell transformation process and then activate prosurvival pathways dependent on MAPK and PI3K/Akt later in fully transformed phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Pierce GB. Histopathology of Neoplasia. Edward A. Smuckler MemorialWorkshop. Keystone, CO; 1994.

    Google Scholar 

  2. Sell S, Pierce GB. Maturation arrest of stem cell differentiation is acommonpathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest 1994;70:6-22.

    PubMed  Google Scholar 

  3. Conlon FL, Barth KS, Robertson EJ. A novel retrovirally induced embryonic lethal mutation in the mouse: assessment of the developmental fate of embryonic stem cells homozygous for the 413.d proviral integration. Development 1991;111:969-81.

    PubMed  Google Scholar 

  4. Conlon FL, Lyons KM, Takaesu N, Barth KS, Kispert A, Herrmann B, et al. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 1994;120:1919-28.

    PubMed  Google Scholar 

  5. Whitman M. Nodal signaling in early vertebrate embryos: themes and variations. Dev Cell 2001;1:605-17.

    PubMed  Google Scholar 

  6. Ding J, Yang L, Yan YT, Chen A, Desai N, Wynshaw-Boris A, et al. Cripto is required for correct orientation of the anteriorposterior axis in the mouse embryo. Nature 1998;395:702-7.

    PubMed  Google Scholar 

  7. Shen MM, Schier AF. The EGF-CFC gene family in vertebrate development. Trends Genet 2000;16:303-9.

    PubMed  Google Scholar 

  8. Feldman B, Gates MA, Egan ES, Dougan ST, Rennebeck G, Sirotkin HI, et al. Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 1998;395:181-5.

    PubMed  Google Scholar 

  9. Gritsman K, Zhang J, Cheng S, Heckscher E, Talbot WS, Schier AF. The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell 1999;97:121-32.

    PubMed  Google Scholar 

  10. Lee MA, Heasman J, Whitman M. Timing of endogenous activin-like signals and regional specification of the Xenopus embryo. Development 2001;128:2939-52.

    PubMed  Google Scholar 

  11. Yeo C, Whitman M. Nodal signals to Smads through Criptodependent and Cripto-independent mechanisms. Mol Cell 2001;7:949-57.

    PubMed  Google Scholar 

  12. ChenY, Schier AF. The zebrafish Nodal signal Squint functions as a morphogen. Nature 2001;411:607-10.

    PubMed  Google Scholar 

  13. Faure S, Lee MA, Keller T, ten Dijke P, Whitman M. Endogenous patterns of TGFbeta superfamily signaling during early Xenopus development. Development 2000;127:2917-31.

    PubMed  Google Scholar 

  14. Bianco C, Adkins HB, Wechselberger C, Seno M, Normanno N, De Luca A, et al. Cripto-1 activates nodal-and ALK4-dependent and-independent signaling pathways in mammary epithelial Cells. Mol Cell Biol 2002;22:2586-97.

    PubMed  Google Scholar 

  15. Kumar A, Novoselov V, Celeste AJ, Wolfman NM, ten Dijke P, Kuehn MR. Nodal signaling uses activin and transforming growth factor-beta receptor-regulated Smads. J Biol Chem 2001;276:656-61.

    PubMed  Google Scholar 

  16. Schier AF, Shen MM. Nodal signalling in vertebrate development. Nature 2000;403:385-9.

    PubMed  Google Scholar 

  17. Yan YT, Liu JJ, Luo Y, E C, Haltiwanger RS, Abate-Shen C, et al. Dual roles of Cripto as a ligand and coreceptor in the nodal signaling pathway. Mol Cell Biol 2002;22:4439-49.

    PubMed  Google Scholar 

  18. Bianco C, Kannan S, De Santis M, Seno M, Tang CK, Martinez-Lacaci I, et al. Cripto-1 indirectly stimulates the tyrosine phosphorylation of erb B-4 through a novel receptor. J Biol Chem 1999;274:8624-9.

    PubMed  Google Scholar 

  19. Schiffer SG, Foley S, Kaffashan A, Hronowski X, Zichittella AE, Yeo CY, et al. Fucosylation of Cripto is required for its 144 Kenney, Adkins, and Sanicola ability to facilitate nodal signaling. J BiolChem 2001;276:37769-78.

    Google Scholar 

  20. Bianco C, Normanno N, De Luca A, Maiello MR, Wechselberger C, Sun Y, et al. Detection and localization of Cripto-1 binding in mouse mammary epithelial cells and in the mouse mammary gland using an immunoglobulin-cripto-1 fusion protein. J Cell Physiol 2002;190:74-82.

    PubMed  Google Scholar 

  21. Adkins HB, Bianco C, Schiffer SG, Rayhorn P, Zafari M, Cheung AE, et al. Antibody blockade of the Cripto CFC domain suppresses tumor cell growth in vivo. J Clin Invest 2003;112:575-87.

    PubMed  Google Scholar 

  22. Cheng SK, Olale F, Bennett JT, Brivanlou AH, Schier AF. EGF-CFC proteins are essential coreceptors for the TGF-beta signals Vg1 and GDF1. Genes & Development. 2003;17:31-6.

    Google Scholar 

  23. Chang C, Eggen BJ, Weinstein DC, Brivanlou AH. Regulation of nodal and BMP signaling by tomoregulin-1 (X7365) through novel mechanisms. Dev Biol 2003;255:1-11.

    PubMed  Google Scholar 

  24. Harms PW, Chang C. Tomoregulin-1 (TMEFF1) inhibits nodal signaling through direct binding to the nodal coreceptor Cripto. Genes Dev 2003;17:2624-9.

    PubMed  Google Scholar 

  25. Yokota C, Kofron M, Zuck M, Houston DW, Isaacs H, Asashima M, et al. A novel role for a nodal-related protein; Xnr3 regulates convergent extension movements via the FGF receptor. Development 2003;130:2199-212.

    PubMed  Google Scholar 

  26. Smith WC, McKendry R, Ribisi S, Jr., Harland RM. A nodalrelated gene defines a physical and functional domain within the Spemann organizer. Cell 1995;82:37-46.

    PubMed  Google Scholar 

  27. Kinoshita N, Minshull J, Kirschner MW. The identification of two novel ligands of the FGF receptor by a yeast screening method and their activity in Xenopus development. Cell 1995;83:621-30.

    PubMed  Google Scholar 

  28. McKendry R, Hsu SC, Harland RM, Grosschedl R. LEF-1/TCF proteins mediate wnt-inducible transcription from the Xenopus nodal-related 3 promoter. Dev Biol 1997;192:420-31.

    PubMed  Google Scholar 

  29. Morkel M, Huelsken J, Wakamiya M, Ding J, van de Wetering M, Clevers H, et al. Beta-catenin regulates Cripto-and Wnt3-dependent gene expression programs in mouse axis and mesoderm formation. Development 2003;130:6283-94.

    PubMed  Google Scholar 

  30. Niemeyer CC, Spencer-Dene B, Wu JX, Adamson ED. Preneoplastic mammary tumor markers: Cripto and Amphiregulin are overexpressed in hyperplastic stages of tumor progression in transgenic mice. Int J Cancer 1999;81:588-91.

    PubMed  Google Scholar 

  31. Kenney NJ, Huang RP, Johnson GR, Wu JX, Okamura D, Matheny W, et al. Detection and location of amphiregulin and Cripto-1 expression in the developing postnatal mouse mammary gland. Mol Reprod Dev 1995;41:277-86.

    PubMed  Google Scholar 

  32. Herrington EE, Ram TG, Salomon DS, Johnson GR, Gullick WJ, Kenney N, et al. Expression of epidermal growth factor-related proteins in the aged adult mouse mammary gland and their relationship to tumorigenesis. J Cell Physiol 1997;170:47-56.

    PubMed  Google Scholar 

  33. Rankin CT, Bunton T, Lawler AM, Lee SJ. Regulation of left-right patterning in mice by growth/differentiation factor-1. Nat Genet 2000;24:262-5.

    PubMed  Google Scholar 

  34. Soderstrom S, Ebendal T. Localized expression of BMP and GDF mRNA in the rodent brain. J Neurosci Res 1999;56:482-92.

    PubMed  Google Scholar 

  35. Ebendal T, Bengtsson H, Soderstrom S. Bone morphogenetic proteins and their receptors: potential functions in the brain. J Neurosci Res 1998;51:139-46.

    PubMed  Google Scholar 

  36. Lee SJ. Expression of growth/differentiation factor 1 in the nervous system: conservation of a bicistronic structure. Proc Natl Acad Sci U S A 1991;88:4250-4.

    PubMed  Google Scholar 

  37. Lee SJ. Identification of a novel member (GDF-1) of the transforming growth factor-beta superfamily. Mol Endocrinol 1990;4:1034-40.

    PubMed  Google Scholar 

  38. Daniel CW, Smith GH. The mammary gland: a model for development. J Mammary Gland Biol Neoplasia 1999;4:3-8.

    PubMed  Google Scholar 

  39. Lowe LA, Supp DM, Sampath K, Yokoyama T, Wright CV, Potter SS, et al. Conserved left-right asymmetry of nodal expression and alterations in murine situs inversus. Nature 1996;381:158-61.

    PubMed  Google Scholar 

  40. Yamamoto M, Meno C, Sakai Y, Shiratori H, Mochida K, Ikawa Y, et al. The transcription factor FoxH1 (FAST) mediates Nodal signaling during anterior-posterior patterning and node formation in the mouse. Genes Dev 2001;15:1242-56.

    PubMed  Google Scholar 

  41. Saijoh Y, Adachi H, Sakuma R, Yeo CY, Yashiro K, Watanabe M, et al. Left-right asymmetric expression of lefty2 and nodal is induced by a signaling pathway that includes the transcription factor FAST2. Mol Cell 2000;5:35-47.

    PubMed  Google Scholar 

  42. Belo JA, Bouwmeester T, Leyns L, Kertesz N, Gallo M, Follettie M, et al. Cerberus-like is a secreted factor with neutralizing activity expressed in the anterior primitive endoderm of the mouse gastrula. Mech Dev 1997;68:45-57.

    PubMed  Google Scholar 

  43. Adamson ED, Minchiotti G, Salomon DS. Cripto: a tumor growth factor and more. J Cell Physiol 2002;190:267-78.

    PubMed  Google Scholar 

  44. Kenney NJ, Smith GH, Maroulakou IG, Green JH, Muller WJ, Callahan R, et al. Detection of amphiregulin and Cripto-1 in mammary tumors from transgenic mice. Mol Carcinog 1996;15:44-56.

    PubMed  Google Scholar 

  45. Wechselberger C, Ebert AD, Bianco C, Khan NI, Sun Y, Wallace-Jones B, et al. Cripto-1 enhances migration and branching morphogenesis of mouse mammary epithelial cells. Exp Cell Res 2001;266:95-105.

    PubMed  Google Scholar 

  46. Niemeyer CC, Persico MG, Adamson ED. Cripto: roles in mammary cell growth, survival, differentiation and transformation. Cell Death Differ 1998;5:440-9.

    PubMed  Google Scholar 

  47. Ciccodicola A, Dono R, Obici S, Simeone A, Zollo M, Persico MG. Molecular characterization of a gene of the 'EGF family' expressed in undifferentiated human NTERA2 teratocarcinoma cells. Embo J 1989;8:1987-91.

    PubMed  Google Scholar 

  48. Ciardiello F, Dono R, Kim N, Persico MG, Salomon DS. Expression of cripto, a novel gene of the epidermal growth factor gene family, leads to in vitro transformation of a normal mouse mammary epithelial cell line. Cancer Res 1991;51:1051-4.

    PubMed  Google Scholar 

  49. Bianco C, Strizzi L, Rehman A, Normanno N, Wechselberger C, Sun Y, et al. A Nodal-and ALK4-independent signaling pathway activated by Cripto-1 through Glypican-1 and c-Src. Cancer Res 2003;63:1192-7.

    PubMed  Google Scholar 

  50. Gray PC, Harrison CA, Vale W. Cripto forms a complex with activin and type II activin receptors and can block activin signaling. Proc Natl Acad Sci U S A 2003;100:5193-8.

    PubMed  Google Scholar 

  51. Wakefield LM, Roberts AB. TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 2002;12:22-9.

    PubMed  Google Scholar 

  52. Risbridger GP, Schmitt JF, Robertson DM. Activins and inhibins in endocrine and other tumors. Endocr Rev 2001;22:836-58.

    PubMed  Google Scholar 

  53. Kalkhoven E, Roelen BA, de Winter JP, Mummery CL, van den Eijnden-van Raaij AJ, van der Saag PT, et al. Resistance to transforming growth factor beta and activin due to reduced receptor expression in human breast tumor cell lines. Cell Growth Differ 1995;6:1151-61.

    PubMed  Google Scholar 

  54. Robinson GW, Hennighausen L. Inhibins and activins regulate mammary epithelial cell differentiation through mesenchymalepithelial interactions. Development 1977;124:2701-2708

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenney, N.J., Adkins, H.B. & Sanicola, M. Nodal and Cripto-1: Embryonic Pattern Formation Genes Involved in Mammary Gland Development and Tumorigenesis. J Mammary Gland Biol Neoplasia 9, 133–144 (2004). https://doi.org/10.1023/B:JOMG.0000037158.91940.1c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMG.0000037158.91940.1c

Navigation