Skip to main content
Log in

Regulation of integrin functions by N-glycans

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Integrins are cell surface transmembrane glycoproteins that function as adhesion receptors in cell-ECM interactions and link matrix proteins to the cytoskeleton. Integrins play an important role in cytoskeleton organization and in the transduction of intracellular signals, regulating various processes such as proliferation, differentiation, apoptosis, and cell migration. Although integrin-mediated adhesion is based on the binding of α and β subunits to a defined peptide sequence, the strength of this binding is modulated by various factors including the status of glycosylation of integrin. Glycosylation reactions are catalyzed by the catalytic action of glycosyltransferases, such as N-acetylglucosaminyltransferase III, V and α1, 6 fucosyltransferase, etc., which catalyze the formation of glycosidic bonds. This review summarizes effects of the posttranslational modification of N-glycans of α3β1 and α5β1 integrins on their association, activation and biological functions, by using biochemical and genetic approaches. Published in 2004.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Varki A, Biological roles of oligosaccharides: All of the theories are correct, Glycobiology 3, 97–130 (1993).

    PubMed  CAS  Google Scholar 

  2. Dwek RA, Glycobiology: "towards understanding the function of sugars", Biochem Soc Trans 23, 1–25 (1995).

    PubMed  CAS  Google Scholar 

  3. Saxon E, Bertozzi CR, Chemical and biological strategies for en-gineering cell surface glycosylation, Annu Rev Cell Dev Biol 17, 1–23 (2001).

    Article  PubMed  CAS  Google Scholar 

  4. Dennis JW, Granovsky M, Warren CE, Protein glycosylation in development and disease, Bioessays 21, 412–21 (1999).

    Article  PubMed  CAS  Google Scholar 

  5. Hynes RO, Integrins: Bidirectional, allosteric signaling machines, Cell 110, 673–87 (2002).

    Article  PubMed  CAS  Google Scholar 

  6. Yamada KM, Miyamoto S, Integrin transmembrane signaling and cytoskeletal control, Curr Opin Cell Biol 7, 681–9 (1995).

    Article  PubMed  CAS  Google Scholar 

  7. Schwartz MA, Ginsberg MH, Networks and crosstalk: Integrin signalling spreads, Nat Cell Biol 4, E65–8 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. Frisch SM, Ruoslahti E, Integrins and anoikis, Curr Opin Cell Biol 9, 701–6 (1997).

    Article  PubMed  CAS  Google Scholar 

  9. Ruoslahti E, Integrin signaling and matrix assembly, Tumour Biol 17, 117–24 (1996).

    Article  PubMed  CAS  Google Scholar 

  10. Kreidberg JA, Functions of alpha3beta1 integrin, Curr Opin Cell Biol 12, 548–53 (2000).

    Article  PubMed  CAS  Google Scholar 

  11. Gu J, Sumida Y, Sanzen N, Sekiguchi K, Laminin-10/11 and fi-bronectin differentially regulate integrin-dependent Rho and Rac activation via p130(Cas)-CrkII-DOCK180 pathway, J Biol Chem 276, 27090–7 (2001).

    Article  PubMed  CAS  Google Scholar 

  12. Gu J, Fujibayashi A, Yamada KM, Sekiguchi K, Laminin-10/11 and fibronectin differentially prevent apoptosis induced by serum removal via phosphatidylinositol 3-kinase/Akt-and MEK1/ERK-dependent pathways, J Biol Chem 277, 19922–8 (2002).

    Article  PubMed  CAS  Google Scholar 

  13. Dennis JW, Laferte S, Waghorne C, Breitman ML, Kerbel RS, Beta 1–6 branching of Asn-linked oligosaccharides is directly associated with metastasis, Science 236, 582–5 (1987).

    PubMed  CAS  Google Scholar 

  14. Hakomori S, Tumor malignancy defined by aberrant glycosyla-tion and sphingo(glyco)lipid metabolism, Cancer Res 56, 5309–18 (1996).

    PubMed  CAS  Google Scholar 

  15. Asada M, Furukawa K, Segawa K, Endo T, Kobata A, Increased expression of highly branched N-glycans at cell surface is corre-lated with the malignant phenotypes of mouse tumor cells, Cancer Res 57, 1073–80 (1997).

    PubMed  CAS  Google Scholar 

  16. Demetriou M, Nabi IR, Coppolino M, Dedhar S, Dennis JW, Reduced contact-inhibition and substratum adhesion in epithelial cells expressing GlcNAc-transferase V, J Cell Biol 130, 383–92 (1995).

    Article  PubMed  CAS  Google Scholar 

  17. Guo HB, Lee I, Kamar M, Akiyama SK, Pierce M, Aberrant N-glycosylation of beta1 integrin causes reduced alpha5beta1 in-tegrin clustering and stimulates cell migration, Cancer Res 62, 6837–45 (2002).

    PubMed  CAS  Google Scholar 

  18. Yamamoto H, Swoger J, Greene S, Saito T, Hurh J, Sweeley C, Leestma J, Mkrdichian E, Cerullo L, Nishikawa A, Ihara Y, Taniguchi N, Moskal JR, Beta1,6-N-acetylglucosamine-bearing N-glycans in human gliomas: Implications for a role in regulating invasivity, Cancer Res 60, 134–42 (2000).

    PubMed  CAS  Google Scholar 

  19. Isaji T, Gu J, Nishiuchi R, Zhao Y, Takahashi M, Miyoshi E, Honke K, Sekiguchi K, Taniguchi N, Introduction of bisecting GlcNAc into integrin alpha 5 beta 1 reduces ligand binding and down-regulates cell adhesion and cell migration, J Biol Chem 279, 19747–54 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. Hakomori S, Kannagi R, Glycosphingolipids as tumor-associated and differentiation markers, J Natl Cancer Inst 71, 231–51 (1983).

    PubMed  CAS  Google Scholar 

  21. Prokopishyn NL, Puzon-McLaughlin W, Takada Y, Laferte S, In-tegrin alpha3beta1 expressed by human colon cancer cells is a major carrier of oncodevelopmental carbohydrate epitopes, J Cell Biochem 72, 189–209 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. Nakagawa H, Zheng M, Hakomori S, Tsukamoto Y, Kawamura Y, Takahashi N, Detailed oligosaccharide structures of human in-tegrin alpha 5 beta 1 analyzed by a three-dimensional mapping technique, Eur J Biochem 237, 76–85 (1996).

    Article  PubMed  CAS  Google Scholar 

  23. Litynska A, Pochec E, Hoja-Lukowicz D, Kremser E, Laidler P, Amoresano A, Monti C, The structure of the oligosaccharides of alpha3beta1 integrin from human ureter epithelium (HCV29) cell line, Acta Biochim Pol 49, 491–500 (2002).

    PubMed  CAS  Google Scholar 

  24. Pochec E, Litynska A, Amoresano A, Casbarra A, Glycosylation profile of integrin alpha 3 beta 1 changes with melanoma progres-sion, Biochim Biophys Acta 7, 1–3 (2003).

    Google Scholar 

  25. Moloney DJ, Panin VM, Johnston SH, Chen J, Shao L, Wilson R, Wang Y, Stanley P, Irvine KD, Haltiwanger RS, Vogt TF, Fringe is a glycosyltransferase that modifies Notch, Nature 406, 369–75 (2000).

    Article  PubMed  CAS  Google Scholar 

  26. Bruckner K, Perez L, Clausen H, Cohen S, Glycosyltransferase activity of Fringe modulates Notch-Delta interactions, Nature 406, 411–5 (2000).

    Article  PubMed  CAS  Google Scholar 

  27. Zheng M, Fang H, Hakomori S, Functional role of N-glycosylation in alpha 5 beta 1 integrin receptor. De-N-glycosylation induces dissociation or altered association of alpha 5 and beta 1 subunits and concomitant loss of fibronectin binding activity, J Biol Chem 269, 12325–31 (1994).

    PubMed  CAS  Google Scholar 

  28. Akiyama SK, Yamada SS, Yamada KM, Analysis of the role of glycosylation of the human fibronectin receptor, J Biol Chem 264, 18011–8 (1989).

    PubMed  CAS  Google Scholar 

  29. Semel AC, Seales EC, Singhal A, Eklund EA, Colley KJ, Bellis SL, Hyposialylation of integrins stimulates the activity of myeloid fibronectin receptors, J Biol Chem 277, 32830–6 (2002).

    Article  PubMed  CAS  Google Scholar 

  30. Pretzlaff RK, Xue VW, Rowin ME, Sialidase treatment exposes the beta1-integrin active ligand binding site on HL60 cells and increases binding to fibronectin, Cell Adhes Commun 7, 491–500 (2000).

    Article  PubMed  CAS  Google Scholar 

  31. Kawano T, Takasaki S, Tao TW, Kobata A, Altered glycosyla-tion of beta 1 integrins associated with reduced adhesiveness to fibronectin and laminin, Int J Cancer 53, 91–6 (1993).

    PubMed  CAS  Google Scholar 

  32. Dennis J, Waller C, Timpl R, Schirrmacher V, Surface sialic acid reduces attachment of metastatic tumour cells to collagen type IV and fibronectin, Nature 300, 274–6 (1982).

    Article  PubMed  CAS  Google Scholar 

  33. Nadanaka S, Sato C, Kitajima K, Katagiri K, Irie S, Yamagata T, Occurrence of oligosialic acids on integrin alpha 5 subunit and their involvement in cell adhesion to fibronectin, J Biol Chem 276, 33657–64 (2001).

    Article  PubMed  CAS  Google Scholar 

  34. Chammas R, Veiga SS, Travassos LR, Brentani RR, Functionally distinct roles for glycosylation of alpha and beta integrin chains in cell-matrix interactions, Proc Natl Acad Sci USA 90, 1795–9 (1993).

    Article  PubMed  CAS  Google Scholar 

  35. Taniguchi N, Ikeda Y, gamma-Glutamyl transpeptidase: Catalytic mechanism and gene expression, Adv Enzymol Relat Areas Mol Biol 72, 239–78 (1998).

    PubMed  CAS  Google Scholar 

  36. Yamashita K, Hitoi A, Taniguchi N, Yokosawa N, Tsukada Y, Kobata A, Comparative study of the sugar chains of gamma-glutamyltranspeptidases purified from rat liver and rat AH-66 hep-atoma cells, Cancer Res 43, 5059–63 (1983).

    PubMed  CAS  Google Scholar 

  37. Narasimhan S, Control of glycoprotein synthesis. UDP-GlcNAc: glycopeptide beta 4-N-acetylglucosaminyltransferase III, an enzyme in hen oviduct which adds GlcNAc in beta 1–4 linkage to the beta-linked mannose of the trimannosyl core of N-glycosyl oligosaccharides, J Biol Chem 257, 10235–42 (1982).

    PubMed  CAS  Google Scholar 

  38. Nishikawa A, Gu J, Fujii S, Taniguchi N, Determination of N-acetylglucosaminyltransferases III, IV and V in normal and hep-atoma tissues of rats, Biochim Biophys Acta 1035, 313–8 (1990).

    PubMed  CAS  Google Scholar 

  39. Shoreibah MG, Hindsgaul O, Pierce M, Purification and char-acterization of rat kidney UDP-N-acetylglucosamine: alpha-6-D-mannoside beta-1,6-N-acetylglucosaminyltransferase, J Biol Chem 267, 2920–7 (1992).

    PubMed  CAS  Google Scholar 

  40. Gu J, Nishikawa A, Tsuruoka N, Ohno M, Yamaguchi N, Kangawa K, Taniguchi N, Purification and characterization of UDP-N-acetylglucosamine: alpha-6-D-mannoside beta 1–6N-acetylglucosaminyltransferase (N-acetylglucosaminyltransferase V) from a human lung cancer cell line, J Biochem 113, 614–9 (1993).

    PubMed  CAS  Google Scholar 

  41. Saito H, Nishikawa A, Gu J, Ihara Y, Soejima H, Wada Y, Sekiya C, Niikawa N, Taniguchi N, cDNA cloning and chromosomal map-ping of human N-acetylglucosaminyltransferase V +, Biochem Biophys Res Commun 198, 318–27 (1994).

    Article  PubMed  CAS  Google Scholar 

  42. Uozumi N, Yanagidani S, Miyoshi E, Ihara Y, Sakuma T, Gao CX, Teshima T, Fujii S, Shiba T, Taniguchi N, Purification and cDNA cloning of porcine brain GDP-L-Fuc:N-acetyl-beta-D-glucosaminide alpha1->6fucosyltransferase, J Biol Chem 271, 27810–7 (1996).

    Article  PubMed  CAS  Google Scholar 

  43. Yanagidani S, Uozumi N, Ihara Y, Miyoshi E, Yamaguchi N, Taniguchi N, Purification and cDNA cloning of GDP-L-Fuc: N-acetyl-beta-D-glucosaminide: alpha1–6 fucosyltransferase (alpha1–6 FucT) from human gastric cancer MKN45 cells, J Biochem 121, 626–32 (1997).

    PubMed  CAS  Google Scholar 

  44. Miyoshi E, Noda K, Yamaguchi Y, Inoue S, Ikeda Y, Wang W, Ko JH, Uozumi N, Li W, Taniguchi N, The alpha 1–6-fucosyltransferase gene and its biological significance, Biochim Biophys Acta 6, 9–20 (1999).

    Google Scholar 

  45. Schachter H, Biosynthetic controls that determine the branching and microheterogeneity of protein-bound oligosaccharides, Adv Exp Med Biol 205, 53–85 (1986).

    PubMed  CAS  Google Scholar 

  46. Yoshimura M, Nishikawa A, Ihara Y, Taniguchi S, Taniguchi N, Suppression of lung metastasis of B16 mouse melanoma by N-acetylglucosaminyltransferase III gene transfection, Proc Natl Acad Sci USA 92, 8754–8 (1995).

    Article  PubMed  CAS  Google Scholar 

  47. Yoshimura M, Ihara Y, Matsuzawa Y, Taniguchi N, Aberrant gly-cosylation of E-cadherin enhances cell-cell binding to suppress metastasis, J Biol Chem 271, 13811–5 (1996).

    Article  PubMed  CAS  Google Scholar 

  48. Kitada T, Miyoshi E, Noda K, Higashiyama S, Ihara H, Matsuura N, Hayashi N, Kawata S, Matsuzawa Y, Taniguchi N, The addition of bisecting N-acetylglucosamine residues to E-cadherin down-regulates the tyrosine phosphorylation of beta-catenin, J Biol Chem 276, 475–80 (2001).

    Article  PubMed  CAS  Google Scholar 

  49. Palecek SP, Loftus JC, Ginsberg MH, Lauffenburger DA, Horwitz AF, Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness, Nature 385, 537–40 (1997).

    Article  PubMed  CAS  Google Scholar 

  50. Jing S, Tapley P, Barbacid M, Nerve growth factor mediates signal transduction through trk homodimer receptors, Neuron 9, 1067–79 (1992).

    Article  PubMed  CAS  Google Scholar 

  51. Ihara Y, Sakamoto Y, Mihara M, Shimizu K, Taniguchi N, Over-expression of N-acetylglucosaminyltransferase III disrupts the ty-rosine phosphorylation of Trk with resultant signaling dysfunction in PC12 cells treated with nerve growth factor, J Biol Chem 272, 9629–34 (1997).

    Article  PubMed  CAS  Google Scholar 

  52. Miyamoto S, Teramoto H, Gutkind JS, Yamada KM, Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin ag-gregation and occupancy of receptors, J Cell Biol 135, 1633–42 (1996).

    Article  PubMed  CAS  Google Scholar 

  53. Sundberg C, Rubin K, Stimulation of beta1 integrins on fibroblasts induces PDGF independent tyrosine phosphorylation of PDGF beta-receptors, J Cell Biol 132, 741–52 (1996).

    Article  PubMed  CAS  Google Scholar 

  54. Renshaw MW, Ren XD, Schwartz MA, Growth factor activa-tion of MAP kinase requires cell adhesion, EMBO J 16, 5592–9 (1997).

    Article  PubMed  CAS  Google Scholar 

  55. Gu J, Zhao Y, Isaji T, Shibukawa Y, Ihara H, Takahashi M, Ikeda Y, Miyoshi E, Honke K, Taniguchi N, Beta1,4-N-Acetylglucosaminyltransferase III down-regulates neu-rite outgrowth induced by costimulation of epidermal growth factor and integrins through the Ras/ERK sig-naling pathway in PC12 cells, Glycobiology 14, 177–86 (2004).

    Article  PubMed  CAS  Google Scholar 

  56. Hakomori Si SI, Inaugural Article: The glycosynapse, Proc Natl Acad Sci USA 99, 225–32 (2002).

    Article  PubMed  CAS  Google Scholar 

  57. Kawakami Y, Kawakami K, Steelant WF, Ono M, Baek RC, Handa K, Withers DA, Hakomori S, Tetraspanin CD9 is a "proteolipid," and its interaction with alpha 3 integrin in microdomain is pro-moted by GM3 ganglioside, leading to inhibition of laminin-5-dependent cell motility, J Biol Chem 277, 34349–58 (2002).

    Article  PubMed  CAS  Google Scholar 

  58. Ono M, Handa K, Withers DA, Hakomori S, Glycosylation effect on membrane domain (GEM) involved in cell adhesion and motil-ity: A preliminary note on functional alpha3, alpha5-CD82 glyco-sylation complex in ldlD 14 cells, Biochem Biophys Res Commun 279, 744–50 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, J., Taniguchi, N. Regulation of integrin functions by N-glycans. Glycoconj J 21, 9–15 (2004). https://doi.org/10.1023/B:GLYC.0000043741.47559.30

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GLYC.0000043741.47559.30

Navigation