Skip to main content
Log in

Implications of Oxidative Stress and Cell Membrane Lipid Peroxidation in Human Cancer (Spain)

  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Reactive Oxygen Species (ROS) result from cell metabolism as well as from extracellular processes. ROS exert some functions necessary for cell homeostasis maintenance. When produced in excess they play a role in the causation of cancer. ROS mediated lipid peroxides are of critical importance because they participate in chain reactions that amplify damage to biomolecules including DNA. DNA attack gives rise to mutations that may involve tumor suppressor genes or oncogenes, and this is an oncogenic mechanism. On the other hand, ROS production is a mechanism shared by many chemotherapeutic drugs due to their implication in apoptosis control. The ROS mediated cell responses depend on the duration and intensity of the cells exposing to the increased ROS environment. Thus the statusredox is of great importance for oncogenetic process activation and it is also implicated in tumor susceptibility to specific chemotherapeutic drugs. Phospholipid Hydroperoxide Glutathione Peroxidase (PH-GPx) is an antioxidant enzyme that is able to directly reduce lipid peroxides even when they are bound to cellular membranes. This article will review the relevance of oxidative stress, particularly of lipid peroxidation, in cell response with special focus in carcinogenesis and cancer therapy that suggests PH-GPx as a potentially important enzyme involved in the control of this processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A 90: 7915.

    Google Scholar 

  2. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271: C1424.

    Google Scholar 

  3. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279: L1005.

    Google Scholar 

  4. Sunderesan M, Yu Z-H, Ferrars VJ, Irani K, Finkel T (1995) Requirement for generation of H2O2 for Platelet-Derived Growth Factor Signal Transduction. Science 270: 296–299.

    Google Scholar 

  5. Demple B, Harrison L (1994) Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem 63: 915.

    Google Scholar 

  6. Hu W, Feng Z, Eveleigh J, et al. (2002) The major lipid peroxidation product, trans-4-hydroxy-2-nonenal, preferentially forms DNA adducts at codon 249 of human p53 gene, a unique mutational hotspot in hepatocellular carcinoma. Carcinogenesis 23: 1781.

    Google Scholar 

  7. Gago-Dominguez M, Castelao JE, Yuan JM, Ross RK, Yu MC (2002) Lipid peroxidation: a novel and unifying concept of the etiology of renal cell carcinoma (United States). Cancer Causes Control 13: 287.

    Google Scholar 

  8. Sander CS, Hamm F, Elsner P, Thiele JJ (2003) Oxidative stress in malignant melanoma and non-melanoma skin cancer. Br J Dermatol 148: 913.

    Google Scholar 

  9. Berliner JA, Heinecke JW (1996) The role of oxidized lipoproteins in atherogenesis. Free Radic Biol Med 20: 707.

    Google Scholar 

  10. Halliwell B (1989) Oxidants and the central nervous system: some fundamental questions. Is oxidant damage relevant to Parkinson's disease, Alzheimer's disease, traumatic injury or stroke? Acta Neurol Scand Suppl 126: 23.

    Google Scholar 

  11. Strange RC, Jones PW, Fryer AA (2000) Glutathione S-transferase: genetics and role in toxicology. Toxicol Lett 112-113: 357.

    Google Scholar 

  12. Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82: 291.

    Google Scholar 

  13. Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82: 47.

    Google Scholar 

  14. Ursini F, Maiorino M, Valente M, Ferri L, Gregolin C (1982) Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochim Biophys Acta 710: 197.

    Google Scholar 

  15. Ursini F, Maiorino M, Gregolin C (1985) The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim Biophys Acta 839: 62.

    Google Scholar 

  16. Sattler W, Maiorino M, Stocker R (1994) Reduction of HDLand LDL-associated cholesterylester and phospholipid hydroperoxides by phospholipid hydroperoxide glutathione peroxidase and Ebselen (PZ 51). Arch Biochem Biophys 309: 214.

    Google Scholar 

  17. Thomas JP, Kalyanaraman B, Girotti AW (1994) Involvement of preexisting lipid hydroperoxides in Cu(2+)-stimulated oxidation of low-density lipoprotein. Arch Biochem Biophys 315: 244.

    Google Scholar 

  18. Zachara BA (1992) Mammalian selenoproteins. J Trace Elem Electrolytes Health Dis 6: 137.

    Google Scholar 

  19. Gladyshev VN, Hatfield DL (1999) Selenocysteine-containing proteins in mammals. J Biomed Sci 6: 151.

    Google Scholar 

  20. Boveris A, Oshino N, Chance B (1972) The cellular production of hydrogen peroxide. Biochem J 128: 617.

    Google Scholar 

  21. Chance B, Williams GR (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol 17: 65–134.

    Google Scholar 

  22. Loschen G, Azzi A, Flohe L (1973) Mitochondrial H2O2 formation: relationship with energy conservation. FEBS Lett 33: 84.

    Google Scholar 

  23. Boveris A, Cadenas E (1975) Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration. FEBS Lett 54: 311.

    Google Scholar 

  24. Lee SH, Blair IA (2000) Characterization of 4-oxo-2-nonenal as a novel product of lipid peroxidation. Chem Res Toxicol 13: 698.

    Google Scholar 

  25. Cleveland JL, Kastan MB (2000) Cancer. A radical approach to treatment. Nature 407: 309.

    Google Scholar 

  26. Albring M, Griffith J, Attardi G (1977) Association of a protein structure of probable membrane derivation with HeLa cell mitochondrial DNA near its origin of replication. Proc Natl Acad Sci U S A 74: 1348.

    Google Scholar 

  27. Clayton DA (1984) Transcription of the mammalian mitochondrial genome. Annu Rev Biochem 53: 573.

    Google Scholar 

  28. Yakes FM, Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A 94: 514.

    Google Scholar 

  29. Kowaltowski AJ, Vercesi AE (1999) Mitochondrial damage induced by conditions of oxidative stress. Free Radic Biol Med 26: 463.

    Google Scholar 

  30. Fliss MS, Usadel H, Caballero Ol, et al. (2000) Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 287: 2017.

    Google Scholar 

  31. Richard SM, Bailliet G, Paez GL, Bianchi MS, Peltomaki P, Bianchi NO (2000) Nuclear and mitochondrial genome instability in human breast cancer. Cancer Res 60: 4231.

    Google Scholar 

  32. Polyak K, Li Y, Zhu H, et al. (1998) Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet 20: 291.

    Google Scholar 

  33. Habano W, Nakamura S, Sugai T (1998) Microsatellite instability in the mitochondrial DNA of colorectal carcinomas: evidence for mismatch repair systems in mitochondrial genome. Oncogene 17: 1931.

    Google Scholar 

  34. Beckman KB, Ames BN (1997) Oxidative decay of DNA. J Biol Chem 272: 19633.

    Google Scholar 

  35. Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272: 20313.

    Google Scholar 

  36. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11: 81.

    Google Scholar 

  37. Lloyd DR, Phillips DH, Carmichael PL (1997) Generation of putative intrastrand cross-links and strand breaks in DNA by transition metal ion-mediated oxygen radical attack. Chem Res Toxicol 10: 393.

    Google Scholar 

  38. Momand J, Wu HH, Dasgupta G (2000) MDM2-master regulator of the p53 tumor suppressor protein. Gene 242: 15.

    Google Scholar 

  39. Gros L, Maksimenko AV, Privezentzev CV, Laval J, Saparbaev MK (2004) Hijacking of the human alkyl-N-purine-DNA glycosylase by 3,N4-ethenocytosine, a lipid peroxidation induced DNA adduct. J Biol Chem 279: 17723.

    Google Scholar 

  40. Zouki C, Jozsef L, Ouellet S, Paquette Y, Filep JG (2001) Peroxynitrite mediates cytokine-induced IL-8 gene expression and production by human leukocytes. J Leukoc Biol 69: 815.

    Google Scholar 

  41. Sata N, Klonowski-Stumpe H, Han B, Haussinger D, Niederau C (1997) Cytotoxicity of peroxynitrite in rat pancreatic acinar AR4-2J cells. Pancreas 15: 278.

    Google Scholar 

  42. Zhuang S, Simon G (2000) Peroxynitrite-induced apoptosis involves activation of multiple caspases in HL-60 cells. Am J Physiol Cell Physiol 279: C341.

    Google Scholar 

  43. Mates JM, Sanchez-Jimenez FM (2000) Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int J Biochem Cell Biol 32: 157.

    Google Scholar 

  44. Hirose K, Longo DL, Oppenheim JJ, Matsushima K (1993) Overexpression of mitochondrial manganese superoxide dismutase promotes the survival of tumor cells exposed to interleukin-1, tumor necrosis factor, selected anticancer drugs, and ionizing radiation. Faseb J 7: 361.

    Google Scholar 

  45. Yoshikawa T, Kokura S, Tainaka K, Naito Y, KondoM(1995) A novel cancer therapy based on oxygen radicals. Cancer Res 55: 1617.

    Google Scholar 

  46. Kong Q, Beel JA, Lillehei KO (2000) A threshold concept for cancer therapy. Med Hypotheses 55: 29.

    Google Scholar 

  47. Murrell GA, Francis MJ, Bromley L (1990) Modulation of fibroblast proliferation by oxygen free radicals. Biochem J 265:659.

    Google Scholar 

  48. Ikebuchi Y, Masumoto N, Tasaka K, et al. (1991) Superoxide anion increases intracellular pH, intracellular free calcium, and arachidonate release in human amnion cells. J Biol Chem 266: 13233.

    Google Scholar 

  49. Craven PA, Pfanstiel J, DeRubertis FR (1986) Role of reactive oxygen in bile salt stimulation of colonic epithelial proliferation. J Clin Invest 77: 850.

    Google Scholar 

  50. Li P, Nijhawan D, Budihardjo I, et al. Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479.

    Google Scholar 

  51. Nomura K, Imai H, Koumura T, Kobayashi T, Nakagawa Y (2000) Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem J 351: 183.

    Google Scholar 

  52. Zamzami N, Marchetti P, Castedo M, et al. (1995) Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 182: 367.

    Google Scholar 

  53. Garcia-Ruiz C, Colell A, Mari M, Morales A, Fernandez-Checa JC (1997) Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem 272: 11369.

    Google Scholar 

  54. Kruman I, Guo Q, Mattson MP (1998) Calcium and reactive oxygen species mediate staurosporine-induced mitochondrial dysfunction and apoptosis in PC12 cells. J Neurosci Res 51:293.

    Google Scholar 

  55. Johnstone RW, Ruefli AA, Lowe SW (2002) Apoptosis: a link between cancer genetics and chemotherapy. Cell 108: 153.

    Google Scholar 

  56. Jabs T (1999) Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem Pharmacol 57: 231.

    Google Scholar 

  57. Benhar M, Dalyot I, Engelberg D, Levitzki A (2001) Enhanced ROS production in oncogenically transformed cells potentiates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation and sensitization to genotoxic stress. Mol Cell Biol 21: 6913.

    Google Scholar 

  58. Davis W Jr, Ronai Z, Tew KD (2001) Cellular thiols and reactive oxygen species in drug-induced apoptosis. J Pharmacol Exp Ther 296: 1.

    Google Scholar 

  59. Tobiume K, Matsuzawa A, Takahashi T, et al. (2001) ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep 2: 222.

    Google Scholar 

  60. Ames BN, McCann J, Yamasaki E (1975) Methods for detecting carcinogens and mutagens with the Salmonella/mammalianmicrosome mutagenicity test. Mutat Res 31: 347.

    Google Scholar 

  61. Farmer PB, Singh R, Kaur B, et al. (2003) Molecular epidemiology studies of carcinogenic environmental pollutants. Effects of polycyclic aromatic hydrocarbons (PAHs) in environmental pollution on exogenous and oxidative DNA damage. Mutat Res 544: 397.

    Google Scholar 

  62. Cebulska-Wasilewska A (2003) Response to challenging dose of X-rays as a predictive assay for molecular epidemiology. Mutat Res 544: 289.

    Google Scholar 

  63. Safi JM (2002) Association between chronic exposure to pesticides and recorded cases of human malignancy in Gaza Governorates (1990-1999). Sci Total Environ 284: 75.

    Google Scholar 

  64. Kyrtopoulos SA, Georgiadis P, Autrup H, et al. (2001) Biomarkers of genotoxicity of urban air pollution. Overview and descriptive data from a molecular epidemiology study on populations exposed to moderate-to-low levels of polycyclic aromatic hydrocarbons: the AULIS project. Mutat Res 496: 207.

    Google Scholar 

  65. Ding M, Shi X, Castranova V, Vallyathan V (2000) Predisposing factors in occupational lung cancer: inorganic minerals and chromium. J Environ Pathol Toxicol Oncol 19: 129.

    Google Scholar 

  66. Klein EA (2004) Selenium: epidemiology and basic science. J Urol 171: S50.

    Google Scholar 

  67. Combs GF, Combs BS (1986) The Role of Selenium in Nutrition. London: Academic Press Inc., 206 pp.

    Google Scholar 

  68. Conklin KA (2000) Dietary antioxidants during cancer chemotherapy: impact on chemotherapeutic effectiveness and development of side effects. Nutr Cancer 37: 1.

    Google Scholar 

  69. Weijl NI, Cleton FJ, Osanto S (1997) Free radicals and antioxidants in chemotherapy-induced toxicity. Cancer Treat Rev 23:209.

    Google Scholar 

  70. Nomura K, Imai H, Koumura T, Arai M, Nakagawa Y (1999) Mitochondrial phospholipid hydroperoxide glutathione peroxidase suppresses apoptosis mediated by a mitochondrial death pathway. J Biol Chem 274: 29294.

    Google Scholar 

  71. Imai H, Nakagawa Y (2003) Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic Biol Med 34: 145.

    Google Scholar 

  72. Rapoport SM (1986) The Reticulocyte, Boca Ratón: CRC Press.

    Google Scholar 

  73. Kuhn H, Borchert A (2002) Regulation of enzymatic lipid peroxidation: the interplay of peroxidizing and peroxide reducing enzymes. Free Radic Biol Med 33: 154.

    Google Scholar 

  74. Blair IA (2001) Lipid hydroperoxide-mediated DNA damage. Exp Gerontol 36: 1473.

    Google Scholar 

  75. Uchida K (2003) 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res 42: 318.

    Google Scholar 

  76. Leonarduzzi G, Arkan MC, Basaga H, Chiarpotto E, Sevanian A, Poli G (2000) Lipid oxidation products in cell signaling. Free Radic Biol Med 28: 1370.

    Google Scholar 

  77. Uchida K, Shiraishi M, Naito Y, Torii Y, Nakamura Y, Osawa T (1999) Activation of stress signaling pathways by the end product of lipid peroxidation. 4-hydroxy-2-nonenal is a potential inducer of intracellular peroxide production. J Biol Chem 274: 2234.

    Google Scholar 

  78. Yang Y, Cheng JZ, Singhal SS, et al. (2001) Role of glutathione S-transferases in protection against lipid peroxidation. Overexpression of hGSTA2-2 in K562 cells protects against hydrogen peroxide-induced apoptosis and inhibits JNK and caspase 3 activation. J Biol Chem 276: 19220.

    Google Scholar 

  79. Cheng JZ, Sharma R, Yang Y, et al. (2001) Accelerated metabolism and exclusion of 4-hydroxynonenal through induction of RLIP76 and hGST5.8 is an early adaptive response of cells to heat and oxidative stress. J Biol Chem 276: 41213.

    Google Scholar 

  80. Fazio VM, Rinaldi M, Ciafre S, Barrera G, Farace MG (1993) Control of neoplastic cell proliferation and differentiation by restoration of 4-hydroxynonenal physiological concentrations. Mol Aspects Med 14: 217.

    Google Scholar 

  81. Keller JN, Mattson MP (1998) Roles of lipid peroxidation in modulation of cellular signaling pathways, cell dysfunction, and death in the nervous system. Rev Neurosci 9: 105.

    Google Scholar 

  82. Nair J, Barbin A, Velic I, Bartsch H (1999) Etheno DNA-base adducts from endogenous reactive species. Mutat Res 424: 59.

    Google Scholar 

  83. Kumagai T, Kawamoto Y, Nakamura Y, et al. (2000) 4-hydroxy-2-nonenal, the end product of lipid peroxidation, is a specific inducer of cyclooxygenase-2 gene expression. Biochem Biophys Res Commun 273: 437.

    Google Scholar 

  84. Ruef J, Rao GN, Li F, et al. (1998) Induction of rat aortic smooth muscle cell growth by the lipid peroxidation product 4-hydroxy-2-nonenal. Circulation 97: 1071.

    Google Scholar 

  85. Cheng JZ, Singhal SS, Saini M, et al. (1999) Effects of mGST A4 transfection on 4-hydroxynonenal-mediated apoptosis and differentiation of K562 human erythroleukemia cells. Arch Biochem Biophys 372: 29.

    Google Scholar 

  86. Dianzani MU, Barrera G, Parola M (1999) 4-Hydroxy-2,3-nonenal as a signal for cell function and differentiation. Acta Biochim Pol 46: 61.

    Google Scholar 

  87. Burcham PC (1998) Genotoxic lipid peroxidation products: their DNA damaging properties and role in formation of endogenous DNA adducts. Mutagenesis 13: 287.

    Google Scholar 

  88. Ward JF (1988) DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol 35: 95.

    Google Scholar 

  89. Brash AR (1999) Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 274: 23679.

    Google Scholar 

  90. Hamberg M (1998) Stereochemistry of oxygenation of linoleic acid catalyzed by prostaglandin-endoperoxide H synthase-2. Arch Biochem Biophys 349: 376.

    Google Scholar 

  91. Yang Y, Sharma R, Sharma A, Awasthi S, Awasthi YC (2003) Lipid peroxidation and cell cycle signaling: 4-hydroxynonenal, a key molecule in stress mediated signaling. Acta Biochim Pol 50:319.

    Google Scholar 

  92. Pryor WA, Stanley JP (1975) Letter: a suggested mechanism for the production of malonaldehyde during the autoxidation of polyunsaturated fatty acids. Nonenzymatic production of prostaglandin endoperoxides during autoxidation. J Org Chem 40: 3615.

    Google Scholar 

  93. Marnett LJ (2000) Oxyradicals and DNA damage. Carcinogenesis 21: 361.

    Google Scholar 

  94. Marnett LJ (1999) Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res 424: 83.

    Google Scholar 

  95. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179: 588.

    Google Scholar 

  96. Chu FF, Doroshow JH, Esworthy RS (1993) Expression, characterization, and tissue distribution of a new cellular selenium-dependent glutathione peroxidase, GSHPx-GI. J Biol Chem 268: 2571.

    Google Scholar 

  97. Maddipati KR, Gasparski C, Marnett LJ (1987) Characterization of the hydroperoxide-reducing activity of human plasma. Arch Biochem Biophys 254: 9.

    Google Scholar 

  98. Maiorino M, Gregolin C, Ursini F (1990) Phospholipid hydroperoxide glutathione peroxidase. Methods Enzymol 186: 448.

    Google Scholar 

  99. Brigelius-Flohe R (1999) Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med 27: 951.

    Google Scholar 

  100. Yant LJ, Ran Q, Rao L, et al. (2003) The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic Biol Med 34: 496.

    Google Scholar 

  101. Roveri A, Maiorino M, Ursini F (1994) Enzymatic and immunological measurements of soluble and membrane-bound phospholipid-hydroperoxide glutathione peroxidase. Methods Enzymol 233: 202.

    Google Scholar 

  102. Pushpa-Rekha TR, Burdsall AL, Oleksa LM, Chisolm GM, Driscoll DM (1995) Rat phospholipid-hydroperoxide glutathione peroxidase. cDNA cloning and identification of multiple transcription and translation start sites. J Biol Chem 270: 26993.

    Google Scholar 

  103. Weitzel F, Wendel A (1993) Selenoenzymes regulate the activity of leukocyte 5-lipoxygenase via the peroxide tone. J Biol Chem 268: 6288.

    Google Scholar 

  104. Huang HS, Chen CJ, Lu HS, Chang WC (1998) Identification of a lipoxygenase inhibitor in A431 cells as a phospholipid hydroperoxide glutathione peroxidase. FEBS Lett 424: 22.

    Google Scholar 

  105. Schnurr K, Belkner J, Ursini F, Schewe T, Kuhn H (1996) The selenoenzyme phospholipid hydroperoxide glutathione peroxidase controls the activity of the 15-lipoxygenase with complex substrates and preserves the specificity of the oxygenation products. J Biol Chem 271: 4653.

    Google Scholar 

  106. Sakamoto H, Imai H, Nakagawa Y (2000) Involvement of phospholipid hydroperoxide glutathione peroxidase in the modulation of prostaglandin D2 synthesis. J Biol Chem 275: 40028.

    Google Scholar 

  107. Ursini F, Heim S, Kiess M, et al. (1999) Dual function of the selenoprotein PHGPx during sperm maturation. Science 285: 1393.

    Google Scholar 

  108. Wang HP, Qian SY, Schafer FQ, Domann FE, Oberley LW, Buettner GR (2001) Phospholipid hydroperoxide glutathione peroxidase protects against singlet oxygen-induced cell damage of photodynamic therapy. Free Radic Biol Med 30: 825.

    Google Scholar 

  109. Huang SLG, A. X., Xiang Y, Wang XB, Ling HJ, Fu L (1995) Clinical study on the treatment of APL mainly with composite Indigo Naturalis tablets. Chin J Hematol 16: 26.

    Google Scholar 

  110. Chen GQ, Zhu J, Shi XG, et al. (1996) In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood 88: 1052.

    Google Scholar 

  111. Huang HS, Chang WC, Chen CJ (2002) Involvement of reactive oxygen species in arsenite-induced downregulation of phospholipid hydroperoxide glutathione peroxidase in human epidermoid carcinoma A431 cells. Free Radic Biol Med 33: 864.

    Google Scholar 

  112. Grechkin A (1998) Recent developments in biochemistry of the plant lipoxygenase pathway. Prog Lipid Res 37: 317.

    Google Scholar 

  113. Schnurr K, Borchert A, Kuhn H (1999) Inverse regulation of lipid-peroxidizing and hydroperoxyl lipid-reducing enzymes by interleukins 4 and 13. Faseb J 13: 143.

    Google Scholar 

  114. Schnurr K, Brinckmann R, Kuhn H (1999) Cytokine induced regulation of 15-lipoxygenase and phospholipid hydroperoxide glutathione peroxidase in mammalian cells. Adv Exp Med Biol 469: 75.

    Google Scholar 

  115. Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294: 1871.

    Google Scholar 

  116. Cao Y, Prescott SM (2002) Many actions of cyclooxygenase-2 in cellular dynamics and in cancer. J Cell Physiol 190: 279.

    Google Scholar 

  117. Chandrasekharan NV, Dai H, Roos KL, et al. (2002) COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci U S A 99: 13926.

    Google Scholar 

  118. Herschman HR (1996) Prostaglandin synthase 2. Biochim Biophys Acta 1299: 125.

    Google Scholar 

  119. Chen CJ, Huang HS, Chang WC (2002) Inhibition of arachidonate metabolism in human epidermoid carcinoma a431 cells overexpressing phospholipid hydroperoxide glutathione peroxidase. J Biomed Sci 9: 453.

    Google Scholar 

  120. Huang HS, Chen CJ, Suzuki H, Yamamoto S, Chang WC (1999) Inhibitory effect of phospholipid hydroperoxide glutathione peroxidase on the activity of lipoxygenases and cyclooxygenases. Prostaglandins Other Lipid Mediat 58: 65.

    Google Scholar 

  121. Shitashige M, Morita I, Murota S (1998) Different substrate utilization between prostaglandin endoperoxide H synthase-1 and-2 in NIH3T3 fibroblasts. Biochim Biophys Acta 1389: 57.

    Google Scholar 

  122. Samuelsson B, Dahlen SE, Lindgren JA, Rouzer CA, Serhan CN (1987) Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 237: 1171.

    Google Scholar 

  123. Chen CJ, Huang HS, Lin SB, Chang WC (2000) Regulation of cyclooxygenase and 12-lipoxygenase catalysis by phospholipid hydroperoxide glutathione peroxidase in A431 cells. Prostaglandins Leukot Essent Fatty Acids 62: 261.

    Google Scholar 

  124. Lin DT, Subbaramaiah K, Shah JP, Dannenberg AJ, Boyle JO (2002) Cyclooxygenase-2: a novel molecular target for the prevention and treatment of head and neck cancer. Head Neck 24: 792.

    Google Scholar 

  125. Howe LR, Dannenberg AJ (2002) A role for cyclooxygenase-2 inhibitors in the prevention and treatment of cancer. Semin Oncol 29: 111.

    Google Scholar 

  126. Dannenberg AJ, Altorki NK, Boyle JO, et al. (2001) Cyclooxygenase 2: a pharmacological target for the prevention of cancer. Lancet Oncol 2: 544.

    Google Scholar 

  127. Gupta RA, Dubois RN (2001) Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer 1:11.

    Google Scholar 

  128. Williams CS, Mann M, DuBois RN (1999) The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 18: 7908.

    Google Scholar 

  129. Fosslien E (2000) Molecular pathology of cyclooxygenase-2 in neoplasia. Ann Clin Lab Sci 30: 3.

    Google Scholar 

  130. Sheng H, Shao J, Morrow JD, Beauchamp RD, DuBois RN (1998) Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res 58: 362.

    Google Scholar 

  131. Kimura M, Osumi S, Ogihara M (2000) Stimulation of DNA synthesis and proliferation by prostaglandins in primary cultures of adult rat hepatocytes. Eur J Pharmacol 404: 259.

    Google Scholar 

  132. Gately S (2000) The contributions of cyclooxygenase-2 to tumor angiogenesis. Cancer Metastasis Rev 19: 19.

    Google Scholar 

  133. Jones MK, Wang H, Peskar BM, et al. (1999) Inhibition of angiogenesis by nonsteroidal anti-inflammatory drugs: insight into mechanisms and implications for cancer growth and ulcer healing. Nat Med 5: 1418.

    Google Scholar 

  134. Majima M, Isono M, Ikeda Y, et al. (1997) Significant roles of inducible cyclooxygenase (COX)-2 in angiogenesis in rat sponge implants. Jpn J Pharmacol 75: 105.

    Google Scholar 

  135. Masferrer JL, Leahy KM, Koki AT, et al. (2000) Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res 60: 1306.

    Google Scholar 

  136. Howe LR, Subbaramaiah K, Brown AM, Dannenberg AJ (2001) Cyclooxygenase-2: a target for the prevention and treatment of breast cancer. Endocr Relat Cancer 8: 97.

    Google Scholar 

  137. Subbaramaiah K, Dannenberg AJ (2003) Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends Pharmacol Sci 24: 96.

    Google Scholar 

  138. Steele VE, Holmes CA, Hawk ET, et al. (1999) Lipoxygenase inhibitors as potential cancer chemopreventives. Cancer Epidemiol Biomarkers Prev 8: 467.

    Google Scholar 

  139. Yamamoto S, Suzuki H, Nakamura M, Ishimura K (1999) Arachidonate 12-lipoxygenase isozymes. Adv ExpMedBiol 447: 37.

    Google Scholar 

  140. Tang DG, Honn KV (1997) Apoptosis of W256 carcinosarcoma cells of the monocytoid origin induced by NDGA involves lipid peroxidation and depletion of GSH: role of 12-lipoxygenase in regulating tumor cell survival. J Cell Physiol 172: 155.

    Google Scholar 

  141. Nie D, Che M, Grignon D, Tang K, Honn KV (2001) Role of eicosanoids in prostate cancer progression. Cancer Metastasis Rev 20: 195.

    Google Scholar 

  142. Shureiqi I, Lippman SM (2001) Lipoxygenase modulation to reverse carcinogenesis. Cancer Res 61: 6307.

    Google Scholar 

  143. Eling TE, Glasgow WC (1994) Cellular proliferation and lipid metabolism: importance of lipoxygenases in modulating epidermal growth factor-dependent mitogenesis. Cancer Metastasis Rev 13: 397.

    Google Scholar 

  144. Eling TE, Everhart AL, Angerman-Stewart J, Hui R, Glasgow WC (1997) Modulation of epidermal growth factor signal transduction by linoleic acid metabolites. Adv Exp Med Biol 407: 319.

    Google Scholar 

  145. Wang HP, Schafer FQ, Goswami PC, Oberley LW, Buettner GR (2003) Phospholipid hydroperoxide glutathione peroxidase induces a delay in G1 of the cell cycle. Free Radic Res 37: 621.

    Google Scholar 

  146. Ionov Y, Yamamoto H, Krajewski S, Reed JC, PeruchoM (2000) Mutational inactivation of the proapoptotic gene BAX confers selective advantage during tumor clonal evolution. Proc Natl Acad Sci U S A 97: 10872.

    Google Scholar 

  147. Tai YT, Lee S, Niloff E, Weisman C, Strobel T, Cannistra SA (1998) BAX protein expression and clinical outcome in epithelial ovarian cancer. J Clin Oncol 16: 2583.

    Google Scholar 

  148. Dang CT, Shapiro CL, Hudis CA (2002) Potential role of selective COX-2 inhibitors in cancer management. Oncology (Huntingt) 16: 30.

    Google Scholar 

  149. Ding XZ, Iversen P, Cluck MW, Knezetic JA, Adrian TE (1999) Lipoxygenase inhibitors abolish proliferation of human pancreatic cancer cells. Biochem Biophys Res Commun 261: 218.

    Google Scholar 

  150. Anderson KM, Seed T, Meng J, Ou D, Alrefai WA, Harris JE (1998) Five-lipoxygenase inhibitors reduce Panc-1 survival: the mode of cell death and synergism of MK886 with gamma linolenic acid. Anticancer Res 18: 791.

    Google Scholar 

  151. Tong WG, Ding XZ, Adrian TE (2002) The mechanisms of lipoxygenase inhibitor-induced apoptosis in human breast cancer cells. Biochem Biophys Res Commun 296: 942.

    Google Scholar 

  152. Masuda H, Tanaka T, Takahama U (1994) Cisplatin generates superoxide anion by interaction with DNA in a cell-free system. Biochem Biophys Res Commun 203: 1175.

    Google Scholar 

  153. Sadzuka Y, Shoji T, Takino Y (1992) Effect of cisplatin on the activities of enzymes which protect against lipid peroxidation. Biochem Pharmacol 43: 1872.

    Google Scholar 

  154. Hrelia S, Fiorentini D, Maraldi T, et al. (2002) Doxorubicin induces early lipid peroxidation associated with changes in glucose transport in cultured cardiomyocytes. Biochim Biophys Acta 1567: 150.

    Google Scholar 

  155. Dumontet C, Drai J, Thieblemont C, et al. (2001) The superoxide dismutase content in erythrocytes predicts short-term toxicity of high-dose cyclophosphamide. Brit J Haematol 112: 405.

    Google Scholar 

  156. Varbiro G, Veres B, Gallyas F Jr, Sumegi B (2001) Direct effect of Taxol on free radical formation and mitochondrial permeability transition. Free Radic Biol Med 31: 548.

    Google Scholar 

  157. Joncourt F, Buser K, Altermatt H, Bacchi M, Oberli A, Cerny T (1998) Multiple drug resistance parameter expression in ovarian cancer. Gynecol Oncol 70: 176.

    Google Scholar 

  158. Di Ilio C, Sacchetta P, Angelucci S, Zezza A, Tenaglia R, Aceto A (1995) Glutathione peroxidase and glutathione reductase activities in cancerous and non-cancerous human kidney tissues. Cancer Lett 91: 19.

    Google Scholar 

  159. van Brussel JP, van Steenbrugge GJ, Romijn JC, Schroder FH, Mickisch GH (1999) Chemosensitivity of prostate cancer cell lines and expression of multidrug resistance-related proteins. Eur J Cancer 35: 664.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel González-Barón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cejas, P., Casado, E., Belda-Iniesta, C. et al. Implications of Oxidative Stress and Cell Membrane Lipid Peroxidation in Human Cancer (Spain). Cancer Causes Control 15, 707–719 (2004). https://doi.org/10.1023/B:CACO.0000036189.61607.52

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CACO.0000036189.61607.52

Navigation