Skip to main content
Log in

The Loss of Estrogen and Progesterone Receptor Gene Expression in Human Breast Cancer

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Hormone responsiveness is a critical determinantof breast cancer progression and management, and theresponse to endocrine therapy is highly correlated withthe estrogen receptor (ER)3 and progesterone receptor (PR) status of tumor cells. Thus, keyareas of study in breast cancer are those mechanismsthat regulate ER and PR expression in normal andmalignant breast tissues. One-third of all breastcancers lack ER and PR; these conditions are associatedwith less differentiated tumors and poorer clinicaloutcome. In addition, approximately one-half ofER-positive tumors lack PR protein and patients withthis phenotype are less likely to respond tohormonal therapies than those whose tumors express bothreceptors. Since PR is induced by ER; its presence is amarker of a functional ER. In this review, we will discuss possible mechanisms for loss of ER andPR gene expression, especially structural changes withineach gene including deletions, polymorphisms ormethylation. Improved understanding of the pathways that lead to loss of ER and/or PR proteinsshould allow the development of better predictiveindicators as well as novel therapeutic approaches totarget these hormone-independent cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Borellini and T. Oka (1989). Growth control and differentiation in mammary epithelial cells. Environ. Health Perspect 80:85 99.

    Google Scholar 

  2. D. L. Ricketts, G. Turnbull, R. Ryall, N. S. B. Bakshi, N. S. B. Raswon, J-C. Gazet, C. Nolan, and R. C. Coombes (1991). Estrogen and progesterone receptor in the normal female breast. Cancer Res. 51:1817-1822.

    Google Scholar 

  3. O. W. Peterson, P. E. Hoyer, and B. Van Deurs (1987). Frequency and distribution of estrogen positive cells in normal, non-lactating human breast tissue. Cancer Res. 47:5748-5751.

    Google Scholar 

  4. C. Markopoulus, U. Berger, P. Wilson, J. Gazet, and R. C. Coombes (1988). Oestrogen receptor content of normal breast cells and breast carcinoma throughout the menstrual cycle. Brit. Med. J. 296:1349-1351.

    Google Scholar 

  5. C. W. Daniels, G. B. Silberstein, and P. Strickland (1987). Direct action of 17-beta estradiol on mouse mammary ducts analyzed by sustain release implants and steroid autoradiography. Cancer Res. 47:6052-6057.

    Google Scholar 

  6. G. B. Silberstein, K. Van Horn, G. Shyamala, and C.W. Daniels (1994). Essential role of endogenous estrogen in directly stimulating mammary growth demonstrated by implants containing pure anti-estrogens. Endocrinology 134:84-90.

    Google Scholar 

  7. K. S. Korach (1994). Insights from the study of animals lacking functional estrogen receptor. Science 266:1524-1527.

    Google Scholar 

  8. J. P. Lydon, F. J. DeMayo, C. R. Funk, S. K. Mani, A. R. Hughes, C. A. Montgomery, Jr., G. Shyamala, O. M. Conneely, and B.W. O' Malley (1995). Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev. 9:2266-2278.

    Google Scholar 

  9. J. P. Lydon, F. J. DeMayo, O. M. Conneely, and B.W. O' Malley (1996). Reproductive phenotypes of the progesterone receptor null mutant mouse. J. Steroid Biochem. Mol. Biol. 56:67-77.

    Google Scholar 

  10. H. Gronemeyer (1991). Transcription activation by estrogen and progesterone receptors. Ann. Rev. Genet. 25:89-123.

    Google Scholar 

  11. L. Tora, J. White, C. Brou, D. Tasset, N. Webster, E. Scheer, and P. Chambon (1989). The human estrogen receptor has two independent nonacidic transcriptional activation functions. Cell 59:477-487.

    Google Scholar 

  12. S. Adler, M. L. Waterman, and M. G. Rosenfeld (1988). Steroid receptor-mediated inhibition of rat prolactin gene expression does not require the receptor DNA-binding domain. Cell 52:685-695.

    Google Scholar 

  13. M. Montano, V. Muller, A. Trobaugh, and B. S. Katzenellenbogen (1995). The carboxy-termina l F domain of the human estrogen receptor: role in the transcriptional activity of the receptor and the effectiveness of antiestrogens as estrogen antagonists. Mol. Endocrinol. 9:814-825.

    Google Scholar 

  14. B. A. Lieberman (1997). The estrogen receptor activity: dependence on multiple protein-protein interactions. Crit. Rev. Euk. Gene Exp. 7:43-59.

    Google Scholar 

  15. W. L. Kraus, E. M. McInerney, and B. S. Katzenellenbogen (1995). Ligand-dependent, transcriptionally productive association of the amino-and carboxyl-termi nal regions of a steroid hormone nuclear receptor. Proc. Natl. Acad. Sci. USA 92:12314-12318.

    Google Scholar 

  16. L. D. Read, C. E. Snider, J. S. Miller, G. L. Greene, and B. S. Katzenellenbogen (1988). Ligand-modulat ed regulation of progesterone receptor messenger ribonucleic acid and protein in human breast cancer cell lines. Mol. Endocrinol. 2:263-271.

    Google Scholar 

  17. S. B. Jakowlew, R. Breathnach, J. M. Teltsa, P. Masaikowski, and P. Chambon (1984). Sequence of pS2 mRNA induced by estrogen in the human breast cancer cell line, MCF-7. Nucleic Acids Res. 12:2861-2878.

    Google Scholar 

  18. D. Dubik and R. P. C. Shiu (1988). Transcriptional regulation of c-myc oncogene expression by estrogen in hormone-responsive human breast cancer cells. J. Biol. Chem. 263:12705-12708.

    Google Scholar 

  19. S. E. Bates, N. E. Davidson, E. M. Valverius, C. E. Freter, R. B. Dickson, J. P. Tam, J. E. Kudlow, M. E. Lippman, and D. S. Salomon (1988). Expression of transforming growth factor and its messenger ribonucleic acid in human breast cancer: its regulation by estrogen and its possible functional significance. Mol. Endocrinol. 2:543-555.

    Google Scholar 

  20. A. Bailly, C. Le Page, M. Rauch, and E. Milgrom (1986). Sequence specific DNA binding of progesterone receptor to the uteroglobin gene. EMBO J. 5:3235-3241.

    Google Scholar 

  21. V. Lamian, B. Y. Gonzalez, F. J. Michel, and R. C. M. Simmen (1993). Non-consensus progesterone response elements medi-ate the progesterone-reg ulated endometrial expression of the uteroferrin gene. J. Steroid Biochem. Mol. Biol. 46:439-450.

    Google Scholar 

  22. J. G. Gao, J. Mazella, D. R. Powell, and L. Tseng (1994). Identification of a distal regulatory sequence of the human IGFBP-1 gene promoter and regulation by progesterone recep-tor in a human endometrial adenocarcinoma cell line. DNA Cell Biol. 13:829-837.

    Google Scholar 

  23. W. L. McGuire (1978). Hormone receptors: their role in pre-dicting prognosis and response to endocrine therapy. Seminar Oncol. 5:428-433.

    Google Scholar 

  24. G. L. Greene, P. Hilna, M. Waterfield, A. Baker, Y. Hort, and J. Shine (1986). Sequence and expression of human estrogen receptor complementary DNA. Science 231:1150-1154.

    Google Scholar 

  25. S. Green, P. Walter, V. Kumar, A. Krust, P-M. Bornet, P. Argos, and P. Chambon (1986). Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature 320:134-139.

    Google Scholar 

  26. M. Ponglikitmonkol, S. Green, and P. Chambon (1988). Genomas. mic organization of the human oestrogen receptor gene. EMBO J. 7:3385-3388.

    Google Scholar 

  27. H. Fujii, C. Marsh, P. Cairns, D. Sidransky, and E. Gabrielson (1996). Genetic divergence in the clonal evolution of breast cancer. Cancer Res. 56:1493-1497.

    Google Scholar 

  28. H. Iwase, J. M. Greenman, D. M. Barnes, L. Bobrow, S. Hodg-son, and C. G. Mathew (1995). Loss of heterozygosity of the oestrogen receptor gene in breast cancer. Brit. J. Cancer 71:448-450.

    Google Scholar 

  29. C. K. Watts, M. L. Handel, R. J. B. King, and R. L. Sutherland (1992). Oestrogen receptor gene structure and function in breast cancer. J. Steroid Biochem. Mol. Biol. 41:3-9.

    Google Scholar 

  30. S. M. Hill, S. A. W. Fuqua, G. C. Chamness, G. L. Greene, and W. L. McGuire (1989). Estrogen receptor expression in human breast cancer associated with an estrogen receptor gene restriction fragment length polymorphism. Cancer Res. 49:145-148.

    Google Scholar 

  31. F. F. Parl, D. R. Cavener, and W. D. Dupont (1989). Genomic DNA analysis of the estrogen receptor gene in breast cancer. Breast Cancer Res. Treat. 14:57-64.

    Google Scholar 

  32. L. Yaich, W. D. Dupont, D. R. Cavener, and F. F. Parl (1992). Analysis of the PvuII restriction fragment polymorphism and exon structure of the estrogen receptor gene in breast cancer and peripheral blood. Cancer Res. 52:77-83.

    Google Scholar 

  33. N. Roodi, L. R. Bailey, W-Y. Kao, C. S. Verrier, C. J. Yee, W. D. Dupont, and F. F. Parl (1995). Estrogen receptor gene analysis in estrogen receptor-positive and receptor-negative primary breast cancer. J. Natl. Cancer Inst. 87:446-451.

    Google Scholar 

  34. T. M. Garcia, T. M. Sanchez, J. L. Cox, P. A. Shaw, J. B. Ross, S. Lehre, and B. Schachter (1989). Identification of a variant form of the human estrogen receptor with an amino acid replacement. Nucleic Acid Res. 17:8364.

    Google Scholar 

  35. Q.-X. Zhang, A. Borg, D. M. Wolf, S. Oesterreich, and S. A. W. Fuqua (1997). An estrogen receptor mutant wiath strong hormone-independ ent activity from a metastatic breast cancer. Cancer Res. 57:1244-1249.

    Google Scholar 

  36. P. S. Karnik, S. Kulkarni, X-P. Liu, G. T. Budd, and R. M. Bukowski (1994). Estrogen receptor mutation in tamoxifen-resistant cancer. Cancer Res. 54:349-353.

    Google Scholar 

  37. D. M. Wolf and V. C. Jordan (1994) The estrogen receptor from a tamoxifen stimulated MCF-7 tumor variant contains a point mutation in the ligand binding domain. Breast Cancer Res. Treat. 31:129-138.

    Google Scholar 

  38. W. L. McGuire, G. C. Chamness, and S. A. W. Fuqua (1992). Estrogen receptor variants in clinical breast cancer. Mol. Endocrinol. 5:1571-1577.

    Google Scholar 

  39. M. L. Graham, N. L. Kreet, L. A. Miller, K. K. Leslie, D. F. Gordon, W. M. Wood, L. L. Wei, and K. B. Horwitz (1990). T47Dco cells, genetically unstable and containing estrogen receptor mutations, are a model for the progression of breast cancer hormone resistance. Cancer Res. 50:6208-6217.

    Google Scholar 

  40. J. J. Pink, S. Y. Jiang, M. Fritsch, and V. C. Jordan (1995). A unique MCF-7 human breast cancer cell line expressing an 80 kD estrogen receptor. Proc. Am. Assoc. Cancer Res. 35:276.

    Google Scholar 

  41. Y. L. Ottaviano, J-P. Issa, F. F. Parl, H. S. Smith, S. B. Baylin, and N. E. Davidson (1994). Methylation of the estrogen recep-tor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res. 54:2552-2555.

    Google Scholar 

  42. R. J. Weigel and E. C. deConinck (1993). Transcriptional con-trol of estrogen receptor in estrogen receptor negative breast carcinoma. Cancer Res. 53:3472-3474.

    Google Scholar 

  43. C. Carmeci, E. C. deConinck, T. Lawton, D. A. Bloch, and R. J. Weigel (1997). Analysis of estrogen receptor messenger RNA in breast carcinomas from archival specimens is predictive of tumor biology. Am. J. Pathol. 150:1563-1570.

    Google Scholar 

  44. E. C. deConinck, L. A. McPherson, and R. J. Weigel (1995). Transcriptional control of estrogen receptor in breast carcinomas. Mol. Cell. Biol. 15:2191-2196.

    Google Scholar 

  45. L. A. McPherson, V. R. Baichwal, and R. J. Weigel (1997). Identification of ERF-1 as a member of the AP2 transcription factor family. Proc. Natl. Acad. Sci. USA 94:4342-4347.

    Google Scholar 

  46. A. P. Bird (1986). CpG-rich islands and the function of DNA methylation. Nature 321:209-213.

    Google Scholar 

  47. E. Li, C. Beard, and R. Jaenisch (1993). Role of DNA methyla-tion in genomic imprinting. Nature 366:362-365.

    Google Scholar 

  48. T. Mohandas, R. S. Sparkes, and L. J. Shapiro (1981). Reactiva-tion of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science 211:393-396.

    Google Scholar 

  49. H. Cedar (1988). DNA methylation and gene activity. Cell 53:3.

    Google Scholar 

  50. P. W. Laird and R. Jainisch (1996). The role of DNA methyla-tion in cancer genetics and epigenetics. Ann. Rev. Genet. 30:441-464.

    Google Scholar 

  51. J. G. Herman, F. Latif, Y. Weng, M. I. Lerman, B. Zbar, S. Liu, D. Samid, D. S. Duan, J. R. Gnarra, W. M. Linehan, and S. B. Baylin (1994). Silencing of the VHL-tumor suppressor gene by DNA methylation in renal carcinoma. Proc. Natl. Acad. Sci. USA 91:9700-9704.

    Google Scholar 

  52. J. G. Herman, A. Merlo, L. Mao, R. G. Lapidus, J-P. Issa, N. E. Davidson, D. Sidransky, and S. B. Baylin (1995). Inactivation of the CDKN2/p16/M ST1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 55:4525-4530.

    Google Scholar 

  53. J. G. Herman, J. Jen, A. Merlo, and S. B. Baylin (1996). Hypermethylati on-associated inactivation indicates a tumor suppressor role for p15INK4B1. Cancer Res. 56:722-727.

    Google Scholar 

  54. W. H. Lee, R. A. Morton, J. I. Epstein, J. D. Brooks, P. A. Campbell, G. S. Bova, W. S. Hsieh, W. B. Isaacs, and W. G. Nelson (1994). Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc. Natl. Acad. Sci. USA 91:11733-11737.

    Google Scholar 

  55. J. G. Graff, J. G. Herman, R. G. Lapidus, H. E. Chopra, R. Xu, D. F. Jarrard, W. B. Isaacs, P. M. Pitha, N. E. Davidson, and S. B. Baylin (1995). E-cadherin expression is silenced by DNA hypermethylatio n in human breast and prostate carcinoma. Cancer Res. 55:5195-5199.

    Google Scholar 

  56. R. Piva, A. P. Rimondi, S. Hanau, I. Maestri, A. Alvisi, V. L. Kumar, and L. del Senno (1990). Different methylation of oestrogen receptor DNA in human breast carcinomas with and without oestrogen receptor. Brit. J. Cancer 61:270-275.

    Google Scholar 

  57. N. S. Falette, S. A. W. Fuqua, G. C. Chamness, M. S. Cheah, G. L. Greene, and W. L. McGuire (1990). Estrogen receptor gene methylation in human breast tumors. Cancer Res. 50:3974-3978.

    Google Scholar 

  58. A. T. Ferguson, R. G. Lapidus, S. B. Baylin, and N. E. Davidson (1995). Demethylation of the estrogen receptor gene in estrogen receptor-negative breast cancer cells can reactivate estrogen receptor gene expression. Cancer Res. 55:2279-2283.

    Google Scholar 

  59. R. G. Lapidus, A. T. Ferguson, Y. L. Ottaviano, F. F. Parl, H. S. Smith, S. A. Weitzman, S. B. Baylin, J-P. J. Issa, and N. E. Davidson (1996). Methylation of estrogen and progesterone receptor genes 5′ CpG islands correlates with lack of ER and PR gene expression in breast tumors. Clinical Cancer Res. 2:805-810.

    Google Scholar 

  60. M. F. Rousseau-Merck, M. Misrahi, E. Loosfelt, E. Milgrom, and R. von Beger (1987). Localization of the human progester-one receptor gene to chromosome 11q22q23. Human Genet. 77:280-282.

    Google Scholar 

  61. I. P. Tomlinson, H. Nicolai, E. Solomon, and W. F. Bodmer (1996). The frequency and mechanism of loss of heterozygosity on chromosome 11q in breast cancer. J. Pathol. 180:38-43.

    Google Scholar 

  62. R. Winqvist, G. M. Hampton, A. Mannermaa, G. Blanco, M. Alavaikko, H. Kiviniemi, P. J. Taskinen, G. A. Evans, F. A. Wright, I. Newsham, and W. K. Cavenee (1995). Loss of heterozygosity for chromosome 11 in primary human breast tumors is associated with poor survival after metastases. Cancer Res. 55:2660-2664.

    Google Scholar 

  63. S. A. W. Fuqua, S. M. Hill, G. Chamness, M. G. Benedix, G. L. Greene, B. W. O' Malley, and W. L. McGuire (1991). Progesterone receptor gene restriction fragment length poly-morphism in human breast tumors. J. Natl. Cancer Inst. 83:1157-1160.

    Google Scholar 

  64. T. P. Manolitsas, P. Englefield, D.M. Eccles, and I. G. Campbell (1997). No association of a 306-bp insertion polymorphism in the progesterone receptor gene with ovarian and breast cancer. Brit. J. Cancer 75:1398-1399.

    Google Scholar 

  65. K. L. Satya-Prakash, S. Pathak, T. C. Hsu, M. Olive, and R. Cailleau (1981). Cytogenetic analysis on eight human breast tumor cell lines: high frequencies of 1q, 11q and HeLa-like marker chromosome. Cancer Genet. Cytogenet. 3:61-73.

    Google Scholar 

  66. C. Mies and W. Voigt (1996). Sequence analysis of the DNA binding domain of the estrogen receptor gene in ER(+)/PR(-) breast cancer. Diagnostic Mol. Pathol. 5:39-44.

    Google Scholar 

  67. L. Kastner, A. Krust, B. Turcotte, U. Stropp, L. Tora, H. Gro-nemeyer, and P. Chambon (1990). Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J. 9:1603-1614.

    Google Scholar 

  68. M. Misrahi, P. Venecie, P. Saugier-Veber, S. Sars, P. Dessen, and E. Milgrom (1993). Structure of the human progesterone receptor gene. Biochim. Biophys Acta 1216:289-292.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapidus, R.G., Nass, S.J. & Davidson, N.E. The Loss of Estrogen and Progesterone Receptor Gene Expression in Human Breast Cancer. J Mammary Gland Biol Neoplasia 3, 85–94 (1998). https://doi.org/10.1023/A:1018778403001

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018778403001

Navigation