Skip to main content
Log in

The Comparative Pathology of Human and Mouse Mammary Glands

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The mouse has emerged as a primary animal modelfor human breast cancer because the mammary glands ofthe two species are very similar in structure andfunction. In this regard the TDLU4 and LAhave similar morphology. The mouse, infected by MMTV,develops "spontaneous" tumors with specificbut limited tumor phenotypes. The advent of geneticmanipulation has created transgenic mice that develophyperplasias and tumors morphologically and cytochemicallycomparable to lesions in humans. Even experiencedpathologists have difficulty distinguishing betweenlesions from the two species, and the morphologicalsimilarities support the utility of the mouse model inunderstanding human breast cancer. In this essay wereview our experience with the histopathology of humanand mouse mammary disease by comparing the normal gland with hyperplastic, dysplastic and neoplasticlesions of traditional and transgenic origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. J. M. Hamilton (1974). Comparative aspects of mammary tumors. Adv. Cancer Res. 19:1–45.

    Google Scholar 

  2. J. Russo, B. A. Gusterson, A. E. Rogers, I. H. Russo, S. R. Wellings, and M. J. van Zwieten (1990). Comparative study of human and rat mammary tumorigenesis. Lab Invest. 62:244–278.

    Google Scholar 

  3. W. J. Muller (1991). Expression of activated oncogenes in the murine mammary gland: Transgenic models for human breast cancer. Cancer Metast. Rev. 10:217–227.

    Google Scholar 

  4. R. D. Cardiff (1996). The biology of mammary transgenes: Five rules. J. Mam. Gland Biol. Neoplasia 1:61–73.

    Google Scholar 

  5. R. D. Cardiff, E. Sinn, W. Muller, and P. Leder (1991). Transgenic oncogene mice. Tumor phenotype predicts genotype. Am. J. Pathol. 139:495–501.

    Google Scholar 

  6. S. R. Wellings, H. M. Jensen, and R. G. Marcum (1975). An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J. Natl. Cancer Inst. 55:231–273.

    Google Scholar 

  7. S. R. Wellings, H. M. Jensen, and M. R. DeVault (1976). Persistent and atypical lobules in the human breast may be precancerous. Experientia 32:1463–1465.

    Google Scholar 

  8. R. D. Cardiff, S. R. Wellings, and L. J. Faulkin (1977). Biology of breast preneoplasia. Cancer 39:2734–2746.

    Google Scholar 

  9. R. R. Anderson (1978). Development Of Mammary Gland In B.L. Larson and V.R. Smith, (eds.), Lactation: A Comprehensive Treatise, Academic Press, New York 4:3–40.

    Google Scholar 

  10. J. R. Harris, S. Hellman, I. C. Henderson, and D. W. Kinne (1996). Breast Diseases, Lippicott-Raven, Philadelphia.

    Google Scholar 

  11. R. Dulbecco, M. Henahan, and B. Armstrong (1982). Cell types and morphogenesis in the mammary gland. Proc. Natl. Acad. Sci. U.S.A. 79:7346–7350.

    Google Scholar 

  12. R. D. Cardiff (1998). Are the TDLU of the human the same as the LA of mice? J. Mam. Gland Biol. Neoplasia 3:3–5.

    Google Scholar 

  13. I. H. Russo and J. Russo (1998). Role of hormones in mammary cancer initiation and progression. J. Mam. Gland Biol. Neoplasia 3:49–62.

    Google Scholar 

  14. S. A. Bartow (1998). Use of the autopsy in study ontogeny and expression of the estrogen receptor gene in human breast. J. Mam. Gland Biol. Neoplasia 3:37–48.

    Google Scholar 

  15. J. L. Fendrick, A.M. Raafat, and S.Z. Haslam (1998). Mammary gland growth and development from the postnatal period to postmeonopause: Ovarian steroid receptor ontogeny and regulation the mouse. J. Mam. Gland Biol. Neoplasia 3:7–22.

    Google Scholar 

  16. S. R. Wellings (1980). Development of human breast cancer. Adv. Cancer Res. 31:287–314.

    Google Scholar 

  17. S. R. Wellings (1980). A hypothesis of the origin of human breast cancer from the terminal ductal lobular unit. Pathol. Res. Pract. 166:515–535.

    Google Scholar 

  18. R. S. Rudland (1987). Stem cells and the development of mammary cancers in experimental rats and in humans. Cancer Metast. Rev. 6:55–83.

    Google Scholar 

  19. G. H. Smith and D. Medina (1988). A morphologically distinct candidate for an epithelial stem cell in mouse mammary gland. J. Cell Sci. 90:173–183.

    Google Scholar 

  20. E. C. Kordon and G. H. Smith (1998). An entire functional mammary gland may comprise the progeny from a single cell. Development 125:1921–1930.

    Google Scholar 

  21. S. Nandi, R. C. Guzman, and J. Yang (1995). Hormones and mammary carcinogenesis in mice, rats, and humans: A unifying hypothesis. Proc. Natl. Acad. Sci. U.S.A. 92:3650–3657.

    Google Scholar 

  22. D. L. Page (1989). Pathology of preinvasive and early breast cancer. Curr. Opin. Oncol. 1:277–283.

    Google Scholar 

  23. D. DeLeon, M.B. Zelinski-Wooten, and M.S. Barkely (1990). Hormonal basis of variation in oestrus cyclicity in selected strains of mice. J. Reprod. Fertil. 89:117–126.

    Google Scholar 

  24. F. Squartini, F. Basolo, and M. Bistocchi (1983). Lobuloacveolar differentiation and tumorigenesis: two separate activities of mouse mammary tumor virus. Cancer Res. 43:5879–5882.

    Google Scholar 

  25. V. M. Weaver, A. H. Fischer, O. W. Peterson, and M. J. Bissell (1996). The importance of the microenvironment in breast cancer progression: Recapitulation of mammary tumorigenesis using a unique human mammary epithelial cell model and a three-dimensional culture assay. Biochem. Cell Biol. 74:833–851.

    Google Scholar 

  26. R. C. Hovey, T.B. McFadden, and R. M. Akers, (1998). Regulation of mammary gland growth and morphogenesis by the mammary fat pad: A species comparison. J. Mam. Gland Biol. Neoplasia 4(1):53–68.

    Google Scholar 

  27. H. Vorheer (1978). Human lactation and breast feeding. In B.L. Larson and V. R. Smith (eds.), Lactation: A Comprehensive Treatise, Academic Press, New York, 4: 182–280.

    Google Scholar 

  28. A. K. Lascelles and C.S. Lee (1978). Involution of the Mammary Gland. Lactation: A Comprehensive Treatise. B.L. Larson and V.R. Smith, (eds.), Academic Press, New York, 4:115–179.

    Google Scholar 

  29. R. Strange, R. R. Friis, L. T. Bemis, and F. J. Geske (1995). Programmed cell death during mammary gland involution. Methods Cell Biol. 46:355–368.

    Google Scholar 

  30. L. J. Beuving (1969). Effects of ovariectomy on preneoplastic nodule formation and maintenance in the mammary glands of carcinogen-treated rats. J. Natl. Cancer Inst. 43:1181–1189.

    Google Scholar 

  31. F. A. Tavassoli (1997). The influence of endogenous and exogenous reproductive hormones on the mammary glands with emphasis on experimental studies in rhesus monkeys. Verh. Dtsch. Ges. Pathol. 81:514–520.

    Google Scholar 

  32. D. M. Ornitz, R. W. Moreadith, and P. Leder (1991). Binary system for regulating transgene expression in mice: Targeting int-2 gene expression with yeast GAL4/UAS control elements. Proc. Natl. Acad. Sci. U.S.A. 88:698–702.

    Google Scholar 

  33. D. Gallahan, C. Jhappan, G. Robinson, L. Hennighausen, R. Sharp, E. Kordon, R. Callahan, G. Merlino, and G. H. Smith (1996). Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis. Cancer Res. 56:1775–1785.

    Google Scholar 

  34. C. Jhappan, A. G. Geiser, E. C. Kordon, D. Bagheri, L. Hennighausen, A. B. Roberts, G. H. Smith, and G. Merlino (1993). Targeting expression of a transforming growth factor beta 1 transgene to the pregnant mammary gland inhibits alveolar development and lactation. EMBO J. 12:1835–1845.

    Google Scholar 

  35. C. T. Guy, S. K. Muthuswamy, R. D. Cardiff, P. Soriano, and W. J. Muller (1994). Activation of the c-Src tyrosine kinase is required for the induction of mammary tumors in transgenic mice. Genes Dev. 8:23–32.

    Google Scholar 

  36. P. Sicinski, J. L. Donaher, S. B. Parker, T. Li, A. Fazeli, H. Gardner, S. Z. Haslam, R. T. Bronson, S. J. Elledge, and R. A. Weinberg (1995). Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82:621–630.

    Google Scholar 

  37. D. M. Ornitz, R. D. Cardiff, A. Kuo, and P. Leder (1992). Int-2, an autocrine and/or ultra-short-range effector in transgenic mammary tissue transplants. J. Natl. Cancer Inst. 84:887–892.

    Google Scholar 

  38. C. T. Guy, R. D. Cardiff, and W. J. Muller (1992). Induction of mammary tumors by expression of polyomavirus middle T oncogene: A transgenic mouse model for metastatic disease. Mol. Cell Biol. 12:954–961.

    Google Scholar 

  39. A. Tehranian, D. W. Morris, B. H. Min, D. J. Bird, R. D. Cardiff, and P. A. Barry (1996). Neoplastic transformation of prostatic and urogenital epithelium by the polyoma virus middle T gene. Am. J. Pathol. 149:1177–1191.

    Google Scholar 

  40. W. J. Muller, C. L. Arteaga, S. K. Muthuswamy, P. M. Siegel, M. A. Webster, R. D. Cardiff, K. S. Meise, F. Li, S. A. Halter, and R. J. Coffey (1996). Synergistic interaction of the Neu proto-oncogene product and transforming growth factor alpha in the mammary epithelium of transgenic mice. Mol. Cell Biol. 16:5726–5736.

    Google Scholar 

  41. S. A. Halter, P. Dempsey, Y. Matsui, M. K. Stokes, R. Graves-Deal, B. L. Hogan, and R. J. Coffey (1992). Distinctive patterns of hyperplasia in transgenic mice with mouse mammary tumor virus transforming growth factor-alpha. Characterization of mammary gland and skin proliferations. Am. J. Pathol. 140:1131–1146.

    Google Scholar 

  42. G. H. Smith, R. Sharp, E. C. Kordon, C. Jhappan, and G. Merlino (1995). Transforming growth factor-alpha promotes mammary tumorigenesis through selective survival and growth of secretory epithelial cells. Am. J. Pathol. 147:1081–1096.

    Google Scholar 

  43. M. A. Webster, J. N. Hutchinson, M. J. Rauh, S. K. Muthuswamy, M. Anton, C. G. Tortorice, R. D. Cardiff, F. L. Graham, J. A. Hassell, and W. J. Muller (1998). Requirement for both Shc and phosphatidylinositol 3′ kinase signaling pathways in polyomavirus middle T-mediated mammary tumorigenesis. Mol. Cell Biol. 18:2344–2359.

    Google Scholar 

  44. M. A. Webster, R. D. Cardiff, and W. J. Muller (1995). Induction of mammary epithelial hyperplasias and mammary tumors in transgenic mice expressing a murine mammary tumor virus/activated c-src fusion gene. Proc. Natl. Acad. Sci. U.S.A. 92:7849–7853.

    Google Scholar 

  45. C. Jhappan, D. Gallahan, C. Stahle, E. Chu, G. H. Smith, G. Merlino, and R. Callahan (1992). Expression of an activated Notch-related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes Dev. 6:345–355.

    Google Scholar 

  46. T. C. Wang, R. D. Cardiff, L. Zukerberg, E. Lees, A. Arnold, and E. V. Schmidt (1994). Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369:669–671.

    Google Scholar 

  47. W. D. Dupont and D. L. Page (1985). Risk factors for breast cancer in women with proliferative breast disease. N. Engl. J. Med. 312:146–151.

    Google Scholar 

  48. N. A. Consensus Report (1986). Is ‘fibrocystic disease’ of the breast precancerous? Arch. Pathol. Lab. Med. 110:171–173.

    Google Scholar 

  49. C. A. Bodian, K. H. Perzin, R. Lattes, P. Hoffmann, and T. G. Abernathy (1993). Prognostic significance of benign proliferative breast disease [see comments]. Cancer 71:3896–3907.

    Google Scholar 

  50. R. D. Cardiff (1984). Protoneoplasia: The molecular biology of murine mammary hyperplasia. Adv. Cancer Res. 42:167–190.

    Google Scholar 

  51. K. B. DeOme, M. J. Miyamoto, R. C. Osborn, R. C. Guzman, and K. Lum (1978). Detection of inapparent nodule-transformed cells in the mammary gland tissues of virgin female BALB/cfC3H mice. Cancer Res. 38:2103–2111.

    Google Scholar 

  52. H. M. Jensen, J. R. Rice, and S. R. Wellings (1976). Preneoplastic lesions in the human breast. Science 191:295–297.

    Google Scholar 

  53. H. M. Jensen and S. R. Wellings (1976). Preneoplastic lesions of the human mammary gland transplanted into the nude athymic mouse. Cancer Res. 36:2605–2610.

    Google Scholar 

  54. L. J. Faulkin, D. J. Mitchell, L. J. Young, D. W. Morris, R. W. Malone, R. D. Cardiff, and M. B. Gardner (1984). Hyperplastic and neoplastic changes in the mammary glands of feral mice free of endogenous mouse mammary tumor virus provirus. J. Natl. Cancer Inst. 73:971–982.

    Google Scholar 

  55. C. W. Daniel, K. B. De Ome, J. T. Young, P. B. Blair, and L. J. Faulkin, Jr. (1968). The in vivo life span of normal and preneoplastic mouse mammary glands: A serial transplantation study. Proc. Natl. Acad. Sci. U.S.A. 61:53–60.

    Google Scholar 

  56. D. W. Morris, P. A. Barry, H. D. Bradshaw, Jr., and R. D. Cardiff (1990). Insertion mutation of the int-1 and int-2 loci by mouse mammary tumor virus in premalignant and malignant neoplasms from the GR mouse strain. J. Virol. 64:1794–1802.

    Google Scholar 

  57. L. Bouchard, L. Lamarre, P. J. Tremblay, and P. Jolicoeur (1989). Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell 57:931–936.

    Google Scholar 

  58. N. Tulchin, F.S. Lee, L. Ornstein, J. Strauchen, and R.D. Cardiff (1995). c-myc protein distribution: Mammary adenocarcinomas of MTV/MYC transgenic mice. Int'l. J. Oncol. 7:5–9.

    Google Scholar 

  59. K. Weijer, K. W. Head, W. Misdorp, and J. F. Hampe (1972). Feline malignant mammary tumors. I. Morphology and biology: Some comparisons with human and canine mammary carcinomas. J. Natl. Cancer Inst. 49:1697–1704.

    Google Scholar 

  60. M. M. Mason, A. E. Bogden, V. Ilievski, H. J. Esber, J. R. Baker, and H. C. Chopra (1972). History of a rhesus monkey adenocarcinoma containing virus particles resembling oncogenic RNA viruses. J. Natl. Cancer Inst. 48:1323–1331.

    Google Scholar 

  61. T. Dunn (1959). Morphology of mammary tumors in mice. In F. Homburger (ed.), Physiopathology of Cancer. A. J. Phiebig: New York., pp. 38–83.

    Google Scholar 

  62. W. J. Muller, F. S. Lee, C. Dickson, G. Peters, P. Pattengale, and P. Leder (1990). The int-2 gene product acts as an epithelial growth factor in transgenic mice. EMBO J. 9:907–913.

    Google Scholar 

  63. T. F. Lane and P. Leder (1997). Wnt-10b directs hypermorphic development and transformation in mammary glands of male and female mice. Oncogene 15:2133–2144.

    Google Scholar 

  64. R. J. Munn, M. Webster, W. J. Muller, and R. D. Cardiff (1995). Histopathology of transgenic mouse mammary tumors (a short atlas). Semin. Cancer Biol. 6:153–158.

    Google Scholar 

  65. W. J. Muller, E. Sinn, P. K. Pattengale, R. Wallace, and P. Leder (1988). Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54:105–115.

    Google Scholar 

  66. C. T. Guy, R. D. Cardiff, and W. J. Muller (1996). Activated neu induces rapid tumor progression. J. Biol. Chem. 271:7673–7678.

    Google Scholar 

  67. C. T. Guy, M. A. Webster, M. Schaller, T. J. Parsons, R. D. Cardiff, and W. J. Muller (1992). Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc. Natl. Acad. Sci. U.S.A. 89:10578–10582.

    Google Scholar 

  68. D. M. Barnes, J. Bartkova, R. S. Camplejohn, W. J. Gullick, P. J. Smith, and R. R. Millis (1992). Overexpression of the c-erbB-2 oncoprotein: Why does this occur more frequently in ductal carcinoma in situ than in invasive mammary carcinoma and is this of prognostic significance? Eur. J. Cancer 28:644–648.

    Google Scholar 

  69. T. J. Liang, A. E. Reid, R. Xavier, R. D. Cardiff, and T. C. Wang (1996). Transgenic expression of tpr-met oncogene leads to development of mammary hyperplasia and tumors. J. Clin. Invest. 97:2872–2877.

    Google Scholar 

  70. J. F. Nelson, K. Karelus, M. D. Bergman, and L. S. Felicio (1995). Neuroendocrine involvement in aging: Evidence from studies of reproductive aging and caloric restriction. Neurobiol. Aging 16:837–843; see discussion pp. 855–856.

    Google Scholar 

  71. J. Vaage and J. P. Harlos (1987). Spontaneous metastasis from primary C3H mouse mammary tumors. Cancer Res. 47:547–550.

    Google Scholar 

  72. L. L. Colombo, D. E. Gomez, L. Puricelli, M. C. Vidal, R. Ponzio, and E. Bal de Kier Joffe (1990). In vivo selection and characterization of a murine mammary tumor subline with high potential for spontaneous lymph node metastasis. J. Surg. Oncol. 45:190–195.

    Google Scholar 

  73. S. F. Juacaba, E. Horak, J. E. Price, and D. Tarin (1989). Tumor cell dissemination patterns and metastasis of murine mammary carcinoma. Cancer Res. 49:570–575.

    Google Scholar 

  74. E. N. Unemori, N. Ways, and D. R. Pitelka (1984). Metastasis of murine mammary tumour lines from the mammary gland and ectopic sites. Brit. J. Cancer. 49:603–614.

    Google Scholar 

  75. D. R. Pitelka, S. T. Hamamoto, and B. N. Taggart (1980). Basal lamina and tissue recognition in malignant mammary tumors. Cancer Res. 40:1600–1611.

    Google Scholar 

  76. R. Callahan (1996). MMTV-induced mutations in mouse mammary tumors: Their potential relevance to human breast cancer. Breast Cancer Res. Treat. 39:33–44.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardiff, R.D., Wellings, S.R. The Comparative Pathology of Human and Mouse Mammary Glands. J Mammary Gland Biol Neoplasia 4, 105–122 (1999). https://doi.org/10.1023/A:1018712905244

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018712905244

Navigation