Skip to main content
Log in

Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: An update

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Poly(ADP-ribosylation) is a post-translational modification of proteins playing a crucial role in many processes, including DNA repair and cell death. The best known poly(ADP-ribosylating) enzime, PARP-1, is a DNA nick sensor and uses βNAD+ to form polymers of ADP-ribose which are further bound to nuclear protein acceptors. To strictly regulate poly(ADP-ribose) turnover, its degradation is assured by the enzyme poly(ADP-ribose) glycohydrolase (PARG). During apoptosis, PARP-1 plays two opposite roles: its stimulation leads to poly(ADP-ribose) synthesis, whereas caspases cause PARP-1 cleavage and inactivation. PARP-1 proteolysis produces an 89 kDa C-terminal fragment, with a reduced catalytic activity, and a 24 kDa N-terminal peptide, which retains the DNA binding domains. The fate and the possible role of these fragments during apoptosis will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Vaux DL, Strasser A The molecular biology of apoptosis. Proc Natl Acad Sci USA 1996; 93: 2239-2244.

    Google Scholar 

  2. Jacobson MD, Weil M, Raff MC Programmed cell death in animal development. Cell 1997; 88: 347-354.

    Google Scholar 

  3. Lowe SW, Lin AW Apoptosis in cancer. Carcinogenesis 2000; 21: 485-495.

    Google Scholar 

  4. Reed JC Apoptosis-regulating proteins as targets for drug discovery. Trends Mol Med 2001; 7: 314-319.

    Google Scholar 

  5. Tamm I, Schriever F, Dörken B Apoptosis: Implications of basic research for clinical oncology. Lancet 2001; 2: 33-42.

    Google Scholar 

  6. Bratton SB, Cohen GM Apoptotic death sensor: An organelle's alter ego? Trends Pharmacol Sci 2001; 22: 306-315.

    Google Scholar 

  7. Vaux DL, Korsmeyer SK Cell death in development. Cell 1999; 96: 245-254.

    Google Scholar 

  8. Chinnaiyan AM The apoptosome: Heart and soul of the cell death machine. Neoplasia 1999; 1: 5-15.

    Google Scholar 

  9. Ha HC, Snyder SH Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci USA 1999; 96: 13978-13982.

    Google Scholar 

  10. Leist M, Single B, Naumann H, et al Inhibition of mitochondrial ATP generation by nitric oxide switches apoptosis to necrosis. Exp Cell Res 1999; 249: 396-403.

    Google Scholar 

  11. Nicotera P, Leist M, Fava E, Berliocchi L, Volbracht C Energy requirement for caspase activation and neuronal cell death. Brain Pathol 2000; 10: 276-282.

    Google Scholar 

  12. Berger NA Poly(ADP-ribose) in the cellular response to DNA damage. Radiation Res 1985; 101: 4-15.

    Google Scholar 

  13. Carson DA, Seto S, Wasson B, Carrera CJ DNA strand breaks, NAD metabolism, and programmed cell death. Exp Cell Res 1986; 4: 273-281.

    Google Scholar 

  14. de Murcia G, Ménissier-de Murcia J Poly(ADP-ribose) polymerase: A molecular nick sensor. Trends Biochem Sci 1994; 19: 172-176.

    Google Scholar 

  15. Jeggo PA DNA repair: PARP—Another guardian angel? Current Biol 1998; 8: 49-51.

    Google Scholar 

  16. Szabó SC, Dawson V Role of poly(ADP-ribose) synthetase in inflammation and ischemia-reperfusion. Trends Pharmacol Sci 1998; 19: 287-298.

    Google Scholar 

  17. Pieper AA, Verma A, Zhang J, Snyder SH Poly(ADP-ribose) polymerase, nitric oxide and cell death. Trends Phamacol Sci 1999; 20: 171-181.

    Google Scholar 

  18. D'Amours D, Desnoyers S, D'Silva I, Poirier GG Poly(ADPribosyl) ation reaction in the regulation of nuclear functions. Biochem J 1999; 342: 249-268.

    Google Scholar 

  19. Bürkle A Physiology and pathophysiology of poly(ADPribosylation). BioEssays 2001; 23: 795-806.

    Google Scholar 

  20. Ziegler M, Oei SL A cellular survival switch: Poly(ADPribosyl) ation stimulatesDNArepair and silences transcription. BioEssays 2001; 23: 543-548.

    Google Scholar 

  21. Rolli V, Ruf A, Augustin A, Schulz GE, Ménissier-de Murcia J, de Murcia J Poly(ADP-ribose) polymerase: Structure and function. In: de Murcia G, Shall S, eds. From DNA Damage and Stress Signalling to Cell Death. Poly ADP-Ribosylation Reactions. London: Oxford University Press, 2000: 35-79.

    Google Scholar 

  22. Kameshita I, Matsuda Z, Taniguchi T, Shizuta Y Poly(ADPribose) synthetase. Separation and identification of three proteolytic fragments as the substrate binding domain, the DNA binding domain, and the automodification domain. J Biol Chem 1984; 259: 4770-4776.

    Google Scholar 

  23. Donzelli M, Negri C, Mandarino A, et al Poly(ADP-ribose) synthesis: A useful parameter to identify apoptotic cells. Histochem J 1997; 29: 831-837.

    Google Scholar 

  24. Rosenthal DS, Ding R, Simbulan-Rosenthal CMG, Vaillancourt JP, Nicholson DW, Smulson ME Intact cell: Evidence for the early synthesis, and subsequent late apopain-mediated suppression, of poly(ADP-ribose) during apoptosis. Exp Cell Res 1997; 232: 313-321.

    Google Scholar 

  25. Scovassi AI, Denegri M, Donzelli M, et al Poly(ADP-ribose) synthesis in cells undergoing apoptosis: An attempt to face death before PARP degradation. Eur J Histochem 1998; 4: 251-258.

    Google Scholar 

  26. Scovassi AI, Poirier GG Poly(ADP-ribosylation) and apoptosis. Mol Cell Biochem 1999; 199: 125-137.

    Google Scholar 

  27. Germain M, Scovassi AI, Poirier GG Role of poly(ADP-ribose) polymerase in apoptosis. In: Szabó C, ed. Cell Death. The Role of PARP. Boca Raton, FL: CRC Press, 2000: 209-225.

    Google Scholar 

  28. Wang Z-Q, Stingl L, Los M, Schulze-Osthoff C, Wagner EF PARP is important for genomic stability but is dispensable in apoptosis. Genes Dev 1997; 11: 2347-2358.

    Google Scholar 

  29. Le Rhun Y, Kirkland JB, Shah GM Cellular responses to DNA damage in the absence of poly(ADP-ribose) polymerase. Biochem Biophys Res Commun 1998; 245: 1-10.

    Google Scholar 

  30. Leist M, Single B, Künstle G, Volbracht C, Hentze H, Nicotera P Apoptosis in the absence of poly(ADP-ribose) polymerase. Biochem Biophys Res Commun 1999; 256: 436-441.

    Google Scholar 

  31. Shall S, de Murcia G Poly(ADP-ribose) polymerase-1: What we have learned from the deficient mouse model? Mutation Res 2000; 460: 1-15.

    Google Scholar 

  32. Jacobson EL, Jacobson MK Isoforms of poly(ADP-ribose) polymerase: Potential roles in cell death. In: Szabó C, ed. Cell Death. The Role of PARP. Boca Raton, FL: CRC Press, 2000: 323-329.

    Google Scholar 

  33. Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG Specific proteolytic cleavage of poly(ADP-ribose) polymerase: An early marker of chemotherapy-induced apoptosis. Cancer Res 1993; 53: 3976-3985.

    Google Scholar 

  34. Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 1994; 371: 346-347.

    Google Scholar 

  35. Nicholson DW, Ali A, Thornberry NA, et al Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 1995; 376: 37-43.

    Google Scholar 

  36. Tewari M, Quan LT, O'Rourke K, et al Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 1995; 81: 801-809.

    Google Scholar 

  37. Casciola-Rosen L, Nicholson DW, Chong T, et al Apopain/CPP32 cleaves proteins that are essential for cellular repair: A fundamental principle of apoptotic death. J Exp Med 1996; 183: 1957-1964.

    Google Scholar 

  38. Alnemri ES, Livingston DJ, Nicholson DW, et al Human ICE/CED-3 protease nomenclature. Cell 1996; 87: 171.

    Google Scholar 

  39. Salvesen GS, Dixit VM Caspases: Intracellular signaling by proteolysis. Cell 1997; 91: 443-446.

    Google Scholar 

  40. Thornberry NA, Lazebnik Y Caspases: Enemies within. Science 1998; 281: 1312-1316.

    Google Scholar 

  41. Chang HY, Yang X Proteases for cell suicide: Functions and regulation of caspases. Microbiol Mol Biol Reviews 2000; 64: 821-846.

    Google Scholar 

  42. Leist M, Jäättelä M Four deaths and a funeral: From caspases to alternative mechanisms. Nature Rev Mol Cell Biol 2001; 2: 589-598.

    Google Scholar 

  43. Duriez P, Shah GM Cleavage of poly(ADP-ribose) polymerase: A sensitive parameter to study cell death. Biochem Cell Biol 1997; 75: 337-349.

    Google Scholar 

  44. Jänicke RU, Ng P, Sprengart ML, Porter AG Caspase-3 is required for alpha-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. J Biol Chem 1998; 273: 15540-15545.

    Google Scholar 

  45. Woo M, Hakem R, Soengas MS, et al Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev 1998; 12: 806-819.

    Google Scholar 

  46. Slee EA, Adrain C, Martin SJ Executioner caspase-3,-6, and-7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 2001; 276: 7320-7326.

    Google Scholar 

  47. Germain M, Affar EB, D'Amours D, Dixit VM, Salvesen GS, Poirier GG Cleavage of automodified poly(ADP-ribose) polymerase during apoptosis: Evidence for involvement of caspase-7. J Biol Chem 1999; 274: 28379-28384.

    Google Scholar 

  48. Sun YL, Zhao Y, Hong X, Zhai ZH Cytochrome c release and caspase activation during menadione-induced apoptosis in plants. FEBS Letters 1999; 462: 317-321.

    Google Scholar 

  49. Tian R-H, Zhang G-Y, Yan C-H, Dai Y-R Involvement of poly(ADP-ribose) polymerase and activation of caspase-like protease in heat shock-induced apoptosis in tobacco suspension cells. FEBS Letters 2000; 474: 11-15.

    Google Scholar 

  50. Jones RA, Johnson VL, Hinton RH, Poirier GG, Chow SC, Kass GEN Liver poly(ADP-ribose)polymerase is resistant to cleavage by caspases. Biochem Biophys Res Commun 1999; 256: 436-441.

    Google Scholar 

  51. Budihardjo II, Poirier GG, Kaufmann SH Apparent cleavage of poly(ADP-ribose) polymerase in non-apoptotic mouse LTA cells: An artifact of cross-reactive secondary antibody. Mol Cell Biochem 1998; 178: 245-249.

    Google Scholar 

  52. Smulson ME, Pang D, Jung M, et al Irreversible binding of poly(ADP)ribose polymerase cleavage product to DNA ends revealed by atomic force microscopy: Possible role in apoptosis Cancer Res 1998; 58: 3495-3498.

    Google Scholar 

  53. Yung TMC, Satoh MS Functional competition between poly(ADP-ribose) polymerase and its 24 kDa apoptotic fragment in DNA repair and transcription. J Biol Chem 2001; 276: 11279-11286.

    Google Scholar 

  54. Kim JW, Won J, Sohn S, Joe CO DNA-binding activity of the N-terminal cleavage product of poly(ADP-ribose) polymerase is required for UV mediated apoptosis. J Cell Sci 2000; 113: 955-961.

    Google Scholar 

  55. D'Amours D, Sallmann FR, Dixit VM, Poirier GG Gain-offunction of poly(ADP-ribose) polymerase-1 upon cleavage by apoptotic proteases: Implications for apoptosis. J Cell Sci 2001; 114: 3771-3778.

    Google Scholar 

  56. Alvarez-Gonzalez R, Spring H, Müller M, Bürkle A Selective loss of poly(ADP-ribose) and the 85-kDa fragment of poly(ADP-ribose) polymerase in nucleoli during alkylationinduced apoptosis in HeLa cells. J Biol Chem 1999; 274: 32122-32126.

    Google Scholar 

  57. Kim JW, Kim K, Kang K, Joe CO Inhibition of homodimerization of poly(ADP-ribose) polymerase by its C-terminal cleavage products produced during apoptosis. J Biol Chem 2000; 275: 8121-8125.

    Google Scholar 

  58. Kockx MM, De Meyer GR, Muhring J, Jacob W, Bult H, Herman AG Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation 1998; 97: 2307-2315.

    Google Scholar 

  59. Krupinski J, Lopez E, Marti E, Ferrer I Expression of caspases and their substrates in the rat model of focal cerebral ischemia. Neur Disease 2000; 7: 332-342.

    Google Scholar 

  60. Li X, Darzynkiewicz Z Cleavage of poly(ADP-ribose) polymerase measured in situ in individual cells: Relationship to DNA fragmentation and cell cycle position during apoptosis. Exp Cell Res 2000; 255: 125-132.

    Google Scholar 

  61. Li X, Du L, Darzynkiewicz Z During apoptosis of HL-60 and U-937 cells caspases are activated independently of dissipation of mitochondrial electrochemical potential. Exp Cell Res 2000; 257: 290-297.

    Google Scholar 

  62. Soldani C, Bottone MG, Pellicciari C, Scovassi AI Twocolor fluorescence detection of Poly(ADP-Ribose) Polymerase-1 (PARP-1) cleavage and DNA strand breaks in etoposidetreated apoptotic cells. Eur J Histochem 2001; 45: 389-392.

    Google Scholar 

  63. Soldani C, Lazzè MC, Bottone MG, et al Poly(ADP-ribose) polymerase cleavage during apoptosis: When and where? Exp Cell Res 2001; 269: 193-201.

    Google Scholar 

  64. Bernardi R, Rossi L, Poirier GG, Scovassi AI Analysis of poly(ADP-ribose) glycohydrolase activity in nuclear extracts from mammalian cells. Biochim Biophys Acta 1997; 1338: 60-68.

    Google Scholar 

  65. Affar EB, Germain M, Winstall E, et al Caspase-3-mediated processing of poly(ADP-ribose) glycohydrolase during apoptosis. J Biol Chem 2001; 276: 2935-2942.

    Google Scholar 

  66. Oliver FJ, de la Rubia G, Rolli V, Ruiz-Ruiz MC, de Murcia G, Ménissier-de Murcia J Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis. Lesson from an uncleavable mutant. J Biol Chem 1998; 273: 33533-33539.

    Google Scholar 

  67. Herceg Z, Wang ZQ Failure of Poly(ADP-ribose) polymerase cleavage by caspases leads to induction of necrosis and enhanced apoptosis. Mol Cell Biol 1999; 19: 5124-5133.

    Google Scholar 

  68. Halappanavar SS, Le Rhun Y, Mounir S, et al Survival and proliferation of cells expressing caspase-uncleavable poly(ADPribose) polymerase in response to death-inducing DNA damage by an alkylating agent. J Biol Chem 1999; 274: 37097-37104.

    Google Scholar 

  69. Boulares AH, Yakovlev AG, Ivanova V, et al Role of poly(ADPribose) polymerase (PARP) cleavage in apoptosis. J Biol Chem 1999; 274: 22932-22940.

    Google Scholar 

  70. Decker P, Isenberg D, Muller S Inhibition of caspase-3-mediated poly(ADP-ribose) polymerase (PARP) apoptotic cleavage by human PARP autoantibodies and effect on cells undergoing apoptosis. J Biol Chem 2000; 275: 9043-9046.

    Google Scholar 

  71. Yakovlev AG, Wang G, Stoica BA, et al A role of the Ca2+/Mg2+-dependent endonuclease in apoptosis and its inhibition by poly(ADP-ribose) polymerase. J Biol Chem 2000; 275: 21302-20308.

    Google Scholar 

  72. Boulares AH, Zoltosky AJ, Contreras FJ, Yakovlev AG, Yoshihara K, Smulson ME Regulation of DNAS1L3 endonuclease activity by poly(ADP-ribosyl)ation during etoposideinduced apoptosis. J Biol Chem 2002; 277: 372-378.

    Google Scholar 

  73. Shah GM, Shah RG, Poirier GG Different cleavage pattern for poly(ADP-ribose) polymerase during necrosis and apoptosis in HL-60 cells. Biochem Biophys Res Commun 1996; 29: 838-844.

    Google Scholar 

  74. Casiano CA, Ochs RL, Tan EM Distinct cleavage products of nuclear proteins in apoptosis and necrosis revealed by autoantibody probes. Cell Death Differ 1998; 5: 183-190.

    Google Scholar 

  75. Gobeil S, Boucher CC, Nadeau D, Poirier GG Characterization of the necrotic cleavage of poly(ADP-ribose) polymerase (PARP-1): Implication of lysosomal proteases. Cell Death Differ 2001; 8: 588-594.

    Google Scholar 

  76. McGinnis KM, Gnegy ME, Park YH, Mukerjie N, Wang KKW Procaspase-3 and poly(ADP)ribose polymerase (PARP) are calpain substrates. Biochem Biophys Res Commun 1999; 263: 94-99.

    Google Scholar 

  77. Sperandio S, de Belle I, Bredesen DE An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci USA 2000; 97: 14376-14381.

    Google Scholar 

  78. Davidovic L, Vodenicharov M, Affar EB, Poirier GG Importance of poly(ADP-ribose) glycohydrolase in the control of poly(ADP-ribose) metabolism. Exp Cell Res 2001; 268: 7-13.

    Google Scholar 

  79. Dini L Recognizing death: Liver phagocytosis of apoptotic cells. Eur J Histochem 2000; 44: 217-227.

    Google Scholar 

  80. Horky M, Wurzer G, Kotala V, et al Segregation of nucleolar components coincides with caspase-3 activation in cisplatintreated HeLa cells. J Cell Sci 2001; 114: 663-670.

    Google Scholar 

  81. Casiano CA, Martin SJ, Green R, Tan EM Selective cleavage of nuclear autoantigens during CD95(FAS/APO-1) mediated T cells apoptosis. J Exp Med 1996; 184: 765-770.

    Google Scholar 

  82. Rosen A, Casciola-Rosen L Autoantigens as substrates for apoptotic proteases: Implications for the pathogenesis of systemic autoimmune desease. Cell Death Differ 1999; 6: 6-12.

    Google Scholar 

  83. Biggiogera M, Bottone MG, Pellicciari C Nuclear ribonucleoprotein-containing structures undergo severe rearrangements during spontaneous thymocyte apoptosis. A morphological study at electron microscopy. Histochem Cell Biol 1997; 107: 331-336.

    Google Scholar 

  84. Biggiogera M, Bottone MG, Martin TE, Uchiumi T, Pellicciari C Still immunodetectable nuclear RNPs are extruded from the cytoplasm of spontaneously apoptotic thymocytes. Exp Cell Res 1997; 234: 512-520.

    Google Scholar 

  85. Biggiogera M, Bottone MG, Pellicciari C Nuclear RNA is extruded from apoptotic cells. J Histochem Cytochem 1998; 46: 999-1006.

    Google Scholar 

  86. Zweier M, Riederer BM, Ochs RL, et al Association of nuclear matrix proteins with granular and threated nuclear bodies in cell lines undergoing apoptosis. Exp Cell Res 1997; 230: 325-366.

    Google Scholar 

  87. Casciola-Rosen LA, Anhalt GJ, Rosen A DNA-dependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis. J Exp Med 1995; 182: 1625-1634.

    Google Scholar 

  88. Pellicciari C, Bottone MG, Scovassi AI, Martin TE, Biggiogera M Rearrangement of nuclear ribonucleoproteins and extrusion of nucleolus-like bodies during apoptosis induced by hypertonic stress. Eur J Histochem 2000; 44: 247-254.

    Google Scholar 

  89. Ayukawa K, Taniguchi S, Masumoto J, et al La autoantigen is cleaved in the COOH terminus and loses the nuclear localization signal during apoptosis. J Biol Chem 2000; 275: 34465-34470.

    Google Scholar 

  90. Hansen MH, Nielsen H, Ditzel HJ The tumor-infiltrating B cell response in medullary breast cancer is oligoclonal and directed against the autoantigen actin exposed on the surface of apoptotic cancer cells. Proc Natl Acad Sci USA 2001; 98: 12659-12664.

    Google Scholar 

  91. Martelli AM, Zweyer M, Ochs RL, et al Nuclear apoptotic changes: An overview. J Cell Biochem 2001; 82: 634-646.

    Google Scholar 

  92. Wu X, Molinaro C, Johnson N, Casiano CA Secondary necrosis is a source of proteolitically modified forms of specific intracellular autoantigens: Implications for systemic autoimmunity. Arthritis Rheum 2001; 44: 2642-2652.

    Google Scholar 

  93. Yamanaka H, Willis EH, Penning CA, Peebles CL, Tan EM, Carson DA Human autoantibodies to poly(adenosine diphosphate-ribose) polymerase. J Clin Invest 1987; 80: 900-904.

    Google Scholar 

  94. Prasad S, Thraves P, Kanai Y, Smulson M, Dritschilo A A dot-blot method for screening polyclonal and monoclonal antisera to poly(ADP-ribose). J Immunol Methods 1989; 116: 79-85.

    Google Scholar 

  95. Negri C, Scovassi AI, Cerino A, et al Autoantibodies to poly(ADP-ribose)polymerase in autoimmune diseases. Autoimmunity 1990; 6: 203-209.

    Google Scholar 

  96. Muller S, Briand JP, Barakat S, et al Autoantibodies reacting with poly(ADP-ribose) and with a zinc-finger functional domain of poly(ADP-ribose) polymerase involved in the recognition of damaged DNA. Clin Immunol Immunopathol 1994; 73: 187-196.

    Google Scholar 

  97. Rovere P, Fazzini F, Sabbadini MG, Manfredi AA Apoptosis and systemic autoimmunity: The dendritic cell connection. Eur J Histochem 2000; 44: 229-236.

    Google Scholar 

  98. Rodenburg RJT, Raats JMH, Prujin GJM, van Venrooij WJ Cell death: A trigger of autoimmunity? BioEssays 2000; 22: 627-636.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soldani, C., Scovassi, A.I. Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: An update. Apoptosis 7, 321–328 (2002). https://doi.org/10.1023/A:1016119328968

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016119328968

Navigation