Skip to main content
Log in

The Effect of Parenterally Administered Cyclodextrins on Cholesterol Levels in the Rat

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The inclusion complex formation of intravenously administered hydroxypropyl-β-cyclodextrin and β-cyclodextrin with endogenous lipids was studied. We tested the hypothesis that complex formation of endogenous cholesterol with cyclodextrins in the bloodstream leads to extraction of cholesterol from the large lipoprotein particles. The relatively small cholesterol–cyclodextrin complexes then leave the bloodstream via capillary pores, and dissociation of the complex in the extravascular compartment finally causes redistribution of cholesterol from blood to tissue. This hypothesis is supported by the following experimental findings. Intravenous administration of cyclodextrins led to a transient decrease in plasma cholesterol levels in a dose-dependent manner, and in vitro cholesterol-cyclodextrin complexes passed dialysis membranes with a molecular weight cutoff of 6000–8000. Further, cyclodextrins increased protein binding of the steroidal drug spironolactone, probably through removal of cholesterol from plasma protein binding sites. Finally, extravascular redistribution was directly demonstrated in histological studies of the kidneys. Glomerular filtration of the cholesterol–cyclodextrin complex is followed by dissociation of the complex in the ultrafiltrate, resulting in cholesterol accumulation in the proximal tubule cells. The cholesterol-β-cyclodextrin complex has a limited aqueous solubility. Crystallization of this complex in renal tissue might explain the nephrotoxicity of parenterally administered β-cyclodextrin. The absence of such crystallization might explain the lower nephrotoxicity of hydroxypropyl-β-cyclodextrin after intravenous administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. H. W. Frijlink, J. Visser, N. R. Hefting, R. Oosting, D. K. F. Meijer, and C. F. Lerk. The pharmacokinetics of β-cyclodextrin and hydroxypropyl-β-cyclodextrin in the rat. Pharm. Res. 7:1248–1252 (1990).

    Google Scholar 

  2. J. Szejtli. Cyclodextrins and Their Inclusion Complexes, Akademiai Kiado, Budapest, 1982.

    Google Scholar 

  3. K. Uekama and M. Otagiri. Cyclodextrins in drug carrier systems. CRC Crit. Rev. Ther. Drug Carrier Syst. 3:1–40 (1986).

    Google Scholar 

  4. T. O. Carpenter, J. M. Pettifor, R. M. Russel, J. Pitha, S. Mohbaran, M. S. Ossip, S. Wainer, and C. S. Anast. Severe hypervitaminosis A in siblings: Evidence of variable tolerance to retinol intake. J. Pediat. 111:507–512 (1987).

    Google Scholar 

  5. J. Pitha and L. Szente. Rescue from hypervitaminosis A or potentiation of retinoid toxicity by different modes of cyclodextrin administration. Life Sci. 32:719–723 (1983).

    Google Scholar 

  6. D. W. Frank, J. E. Gray, and R. N. Weaver. Cyclodextrin nephrosis in the rat. Am. J. Pathol. 83:367–383 (1976).

    Google Scholar 

  7. J. Szejtli. The metabolism, toxicity and biological effects of cyclodextrins. In D. Duchêne (ed.), Cyclodextrins and Their Industrial Uses, Editions de Santé, Paris, 1987, pp. 175–210.

    Google Scholar 

  8. J. Serfozo, P. Szabo, Ferenczy, A. Toth-Jakab. Renal effects of parenterally administered methylated cyclodextrins on rabbits. In J. Szejtliu (ed.), I. Int. Symp. Cyclodextrins Budapest, 1981, D. Reidel, Dordrecht, 1982, pp. 123–132.

    Google Scholar 

  9. J. Szejtli and J. Pagington. Hydroxypropyl-βCD the new parenteral drug carrier. Cyclodextrin News 2 (8):1–5 (1988).

    Google Scholar 

  10. J. Pitha. Amorphous water soluble derivatives of cyclodextrins: from test tube to patient. J. Control. Rel. 6:309–313 (1987).

    Google Scholar 

  11. J. Pitha, L. Szente, and J. Szejtli. Molecular encapsulation of drugs by cyclodextrins and congeners. In S. D. Bruck (ed.), Controlled Drug Delivery, CRC Press, Boca Raton, FL, 1983, Vol. 1, pp 125–148.

    Google Scholar 

  12. T. Higuchi and K. Connors. Phase solubility techniques. Adv. Anal. Chem. Instr. 4:117–212 (1965).

    Google Scholar 

  13. L. A. Selvidge and M. R. Eftink. Spectral displacement techniques for studying the binding of spectroscopically transparent ligands to cyclodextrins. Anal. Biochem. 154:400–408 (1986).

    Google Scholar 

  14. H. W. Frijlink, A. J. M. Schoonen, and C. F. Lerk. The effects of cyclodextrins on drug absorption. I. In vitro observations. Int. J. Pharm. 49:91–102 (1989).

    Google Scholar 

  15. B. P. Lisboa. Chromatography of sterols and steroids. In G. V. Marinetti (ed.), Lipid Chromatographic Analysis, Marcel Dekker, New York, 1969, Vol. 2, pp. 57–148.

    Google Scholar 

  16. H. P. R. Bootsma, H. W. Frijlink, A. Eissens, J. H. Proost, H. Van Doorne, and C. F. Lerk. β-Cyclodextrin as an excipient in solid oral dosage forms: In vitro and in vivo evaluation of spraydried diazepam-β-cyclodextrin products. Int. J. Pharm. 51:213–223 (1989).

    Google Scholar 

  17. M. Vikmon. Rapid and simple spectrophotometric method for determination of micro-amounts of cyclodextrins. In J. Szejtli (ed.), I. Int. Symp. Cyclodextrins Budapest, 1981, D. Reidel, Dordrecht, 1982, pp. 69–74.

    Google Scholar 

  18. I. W. Duncan, P. H., Culbreth and C. A. Burtis. Determination of free, total, and esterfied cholesterol by high-performance liquid chromatography. J. Chromatogr. 162:281–292 (1979).

    Google Scholar 

  19. H. W. Frijlink, J. Visser, and B. F. H. Drenth. Determination of cyclodextrins in biological fluids by high-performance liquid chromatography with negative colorimetric detection using post-column complexation with phenolphthalein. J. Chromatogr. 415:325–333 (1987).

    Google Scholar 

  20. A. B. Steffens. A method for frequent sampling of blood and continuous infusion of fluids in the rat without disturbing the animal. Physiol. Behav. 4:833–836 (1969).

    Google Scholar 

  21. A. G. Everson Pearse. Histochemistry, Theoretical and Applied, J. & A. Churchill, London, 1960.

    Google Scholar 

  22. M. E. Haberland and J. A. Reynolds. Self-association of cholesterol in aqueous solution. Proc. Natl. Acad. Sci. USA 70:2313–2316 (1973).

    Google Scholar 

  23. R. J. Bergeron. Cycloamylose-substrate binding. In J. L. Atwood, J. E. D. Davies, and D. D. MacNicol (eds.), Inclusion Compounds, Academic Press, London, 1984, Vol. 3, pp. 391–443.

    Google Scholar 

  24. A. S. Ng, R. B. Kluza, and D. W. Newton. Distribution coefficients and in vitro human serum protein binding of spironolactone and its 7α-carboxymethyl analog. J. Pharm. Sci. 69:30–32 (1980).

    Google Scholar 

  25. Y. W. Chien, L. M. Hofmann, H. J. Lambert and L. C. Tao. Binding of spironolactones to human plasma proteins. J. Pharm. Sci. 65:1337–1340 (1976).

    Google Scholar 

  26. F. Mollgaard Andersen and H. Bundgaard. Inclusion complexation of spironolactone with cyclodextrins. Arch. Pharm. Chem. Sci. Ed. 11:7–14 (1983).

    Google Scholar 

  27. S. H. Quafordt and H. L. Hilderman. Quantitation of the in vitro free cholesterol exchange of human red cells and lipoproteins. J. Lipid Res. 11:528–535 (1970).

    Google Scholar 

  28. T. Irie, M. Otagiri, M. Sunada, K. Uekama, Y. Ohtani, Y. Yamada, and Y. Sugiyama. Cyclodextrin-induced hemolysis and shape changes of human erythrocytes in vitro. J. Pharm. Dyn. 5:741–744 (1982).

    Google Scholar 

  29. M. N. Cayen, L. Givner, and M. Kraml. Effect of diurnal rhythm and food withdrawal on serum lipid levels in the rat. Experientia 28:502–503 (1972).

    Google Scholar 

  30. P. Marino, D. Gavish, E. Shafrir, and S. Eisenberg. Diurnal variations of plasma lipids, tissue and plasma lipoprotein lipase, and VLDL secretion rates in the rat. A model for studies of VLDL metabolism. Biochim. Biophys. Acta 920:277–284 (1987).

    Google Scholar 

  31. K. R. Norum, T. Berg, P. Helgerud, and C. A. Drevon. Transport of cholesterol. Physiol Rev. 63:1343–1419 (1983).

    Google Scholar 

  32. D. Reichl and N. E. Miller. The anatomy and physiology of reverse cholesterol transport. Clin. Sci. 70:221–231 (1986).

    Google Scholar 

  33. K. Petrak and P. Goddard. Transport of macromolecules across the capillary walls. Adv. Drug Deliv. Rev. 3:191–214 (1989).

    Google Scholar 

  34. E. Vasile, A. Nistor, S. Nedelcu, M. Simionescu, and N. Simionescu. Dual pathway of low density lipoprotein transport through aortin endothelium, and vasa vasorum, in situ. Eur. J. Cell Biol. 22:181 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frijlink, H.W., Eissens, A.C., Hefting, N.R. et al. The Effect of Parenterally Administered Cyclodextrins on Cholesterol Levels in the Rat. Pharm Res 8, 9–16 (1991). https://doi.org/10.1023/A:1015861719134

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015861719134

Navigation