Skip to main content
Log in

Correlating Partitioning and Caco-2 Cell Permeability of Structurally Diverse Small Molecular Weight Compounds

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

REFERENCES

  1. I. J. Hidalgo, T. J. Raub, and R. T. Borchardt. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal permeability. Gastroenterology 96:736–749 (1989).

    PubMed  Google Scholar 

  2. P. Artursson. Cell cultures as models for drug absorption across the intestinal mucosa. Control. Rev. Ther. Drug. Sys. 8:305–330 (1991).

    Google Scholar 

  3. P. Artursson and J. Karlsson. Correlation between oral drug absorption in humans and apparent drug permeability coefficient in human intestinal epithelial (Caco-2) cells. Biochim. Biophys. Res. Commun. 175:880–885 (1991).

    Google Scholar 

  4. W. Rubas, N. Jezyk, and G. M. Grass. Comparison of the permeability of a human colonic epithelial (Caco-2) cell line to colon of rabbit, monkey, and dog intestine and human drug absorption. Pharm. Res. 10:113–118 (1993).

    PubMed  Google Scholar 

  5. B. H. Stewart, H. O. Chan, R. H. Lu, E. L. Reyner, H. L. Schmid, H. W. Hamilton, B. A. Steinbaugh, and M. D. Taylor. Comparison of intestinal permeabilities determined in multiple in vitro and in situ models: Relationship to absorption in humans. Pharm. Res. 12:693–699 (1995).

    PubMed  Google Scholar 

  6. V. A. Levin. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J. Med. Chem. 23:682–684 (1980).

    PubMed  Google Scholar 

  7. L. Hovgaard, H. Brønstedt, A. Buur, and H. Bundgaard. Drug delivery studies in Caco-2 monolayers. Synthesis, hydrolysis, and transport of o-cyclopropane carboxylic acid ester prodrugs of various β-blocking agents. Pharm. Res. 12:387–392 (1995).

    PubMed  Google Scholar 

  8. A. Buur, L. Trier, C. Magnusson, and P. Artursson. Permeability of 5-fluorouracil and prodrugs in Caco-2 cell monolayers. Int. J. Pharm. 129:223–231 (1996).

    Google Scholar 

  9. P. Wils, A. Warney, V. Phung-Ba, S. Legrain, and D. Scherman. High lipophilicity decreases drug transport across intestinal epithelial cells. J. Pharm. Expt. Ther. 269:654–658 (1994).

    Google Scholar 

  10. A. R. Hilgers, R. A. Conradi, and P. S. Burton. Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm. Res. 7:902–910 (1990).

    PubMed  Google Scholar 

  11. P. S. Burton, R. A. Conradi, A. R. Hilgers, N. F. H. Ho, and L. L. Maggiora. The relationship between peptide structure and transport across epithelial cell monolayers. J. Control. Rel. 19:87–98 (1992).

    Google Scholar 

  12. D. Kim, P. S. Vurton, and R. T. Borchardt. A correlation between the permeability characteristics of a series of peptides using an in vitro cell culture model (Caco-2) and those using an in situ perfused rat ileum model of the intestinal mucosa. Pharm. Res. 10:1710–1714 (1993).

    PubMed  Google Scholar 

  13. K. Palm, K. Luthman, A. Ungell, G. Strandlund, and P. Artursson. Correlation of drug absorption with molecular surface properties. J. Pharm. Sci. 85:32–39 (1996).

    PubMed  Google Scholar 

  14. C. Pidgeon, S. Ong, H. Liu, X. Qui., M. Pidgeon, A. Dantzig, J. Munroe, W. J. Hornback., J. S. Kasher, L. Glunz., and T. Sczerba. IAM chromatography: an in vitro screen for predicting drug membrane permeability. J. Med. Chem. 38:590–594 (1995).

    PubMed  Google Scholar 

  15. R. M. Venable, Y. Zhang, B. J. Hardy, and R. W. Pastor. Molecular dynamics simulations of a lipid bilayer and of hexadecane: an investigation of membrane fluidity. Science 262:223–226 (1993).

    PubMed  Google Scholar 

  16. D. E. Leahy, P. J. Taylor, and A. R. Wait. Model solvent systems for QSAR Part I. Propylene glcyol dipelargonate (PGDP). A new standard solvent for use in partition coefficient determination. Quant. Struct.-Act. Relat. 8:17–31 (1989).

    Google Scholar 

  17. D. B. Jack. Handbook of Clinical Pharmacokinetic Data, Macmillan Publishers Ltd., 1992, pp. 25–85.

  18. L. S. Goodman and A. Gilman, The Pharmacological Basis of Therapeutics, 4th ed., The Macmillan Co., 1970, pp. 334, 533, 589, 1543.

  19. L. S. Goodman and A. Gilman. The Pharmacological Basis of Therapeutics, 9th ed., McGraw Hill, 1996, pp 641, 1712–1792.

  20. Physicians' Desk Reference, 52 Ed. Medical Economic Co. Montvale, NJ, 1998, pp. 1127, 1677, 2559.

  21. F. R. Sallee and Ollock, B. G., Clinical pharmacokinetics of imipramine and desipramine, Clin. Pharmacokinet. 18:346–364 (1990).

    PubMed  Google Scholar 

  22. P. Artursson, K. Palm, and K. Luthman. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug. Delivery. Rev. 22:67–84 (1996).

    Google Scholar 

  23. W. J. Lyman, Reehl, W. F., and Rosenblatt, D. H., in Handbook of Chemical Property Estimation Methods: Environmental Behavior of Organic Compounds, Chapter 17, McGraw-Hill, New York, 1982.

    Google Scholar 

  24. K. Palm, P. Stenberg, K. Luthman, and P. Arturson, Polar molecular surface properties predict the intestinal absorption of drugs in humans, Pharm. Res. 14:568–571 (1997).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yazdanian, M., Glynn, S.L., Wright, J.L. et al. Correlating Partitioning and Caco-2 Cell Permeability of Structurally Diverse Small Molecular Weight Compounds. Pharm Res 15, 1490–1494 (1998). https://doi.org/10.1023/A:1011930411574

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011930411574

Navigation