Skip to main content
Log in

Epigenetic Downregulation of the Retinoic Acid Receptor-β2 Gene in Breast Cancer

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

A growing body of evidence supports the hypothesis that the retinoic acid receptor β2 (RAR-β2) gene is a tumor suppressor gene which induces apoptosis and that the chemopreventive and therapeutic effects of retinoids are due to induction of RAR-β2. During breast cancer progression, RAR-β2 is reduced or even lost. It is known from studies of other tumor-suppressor genes that methylation of the 5′-region is the cause of loss of expression. Several groups demonstrated that this is also true for the RAR-β2 in breast cancer by treating breast cancer cell lines with a demethylating agent and examining expression of the RAR-β2 gene in response to a challenge with retinoic acid. Studies using sodium bisulfite genomic sequencing as well as methylation specific PCR showed that a number of breast cancer cell lines as well as breast cancer tissue showed signs of methylation. The RAR-β2 gene was unmethylated in non-neoplastic breast tissue as well as in other normal tissues. A combination of retinoic acid with demethylating agents as well as with histone deacetylase inhibitors acts synergistically to inhibit growth. This review presents data that suggest that treatment of cancer patients with demethylating agents followed by retinoic acid may offer a new therapeutic modality. Both the time of commencement of chemoprevention and the choice of substances that are able either to prevent de novo methylation or to reverse methylation-caused gene silencing may be important considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. C. López-Otín and E. P. Diamandis (1998). Breast and prostate cancer: An analysis of common epidemiological, genetic, and biochemical features. Endocrinol. Rev. 19:365–396.

    Google Scholar 

  2. M. B. Sporn and D. L. Newton (1979). Chemoprevention of cancer with retinoids. Fed. Proc. 38:2528–2534.

    Google Scholar 

  3. W. Ki Hong, S. M. Lippman, W. N. Hittelmann, and R. Lotan (1995). Retinoid chemoprevention of aerodigestive cancer: From basic research to the clinic. Clin. Cancer Res. 1:677–686.

    Google Scholar 

  4. U. Pastorino, M. Infante, M. Maioli, G. Chiesa, M. Buyse, P. Firket, et al. (1993). Adjuvant treatment of stage I lung cancer with high-dose vitamin A. J. Clin. Oncol. 11:1216–1222.

    Google Scholar 

  5. U. Veronesi, G. De Palo, E. Marubini. A. Costa, F. Formelli, L. Mariani, A. Decensi, T. Camerini, M. R. Del Turco, M.G. Di Mauro, M.G. Muraca, M. DelVecchio, C. Pinto, G. D?Aiuto, C. Boni, T. Campa, A. Magni, R. Miceli, M. Perloff, W. F. Malone, and M. B. Sporn (1999). Randomized trial of fenretinide to prevent second breast malignancy in women with early breast cancer. J. Natl. Cancer. Inst. 91:1847–1856.

    Google Scholar 

  6. R. C. Moon, D. L. McCormick, and R.G. Mehta (1983). Inhibition of carcinogenesis by retinoids. Cancer Res. 43:2469s-2475s.

    Google Scholar 

  7. M. A. Anzano, S.W. Byers, J.M. Smith, C.W. Peer, L.T. Mullen, C.C. Brown, A.B. Roberts, and M.B. Sporn (1994). Prevention of breast cancer in the rat with 9-cis-retinoic acid as a single agent and in combination with tamoxifen. Cancer Res. 54:4614–4617.

    Google Scholar 

  8. M. A. Anzano, C. W. Peer, J. M. Smith, L. T. Mullen, M. W. Shrader, D. L. Logsdon, C. L. Driver, C. C. Brown, A. B. Roberts, and M. B. Sporn (1996). Chemoprevention of mammary carcinogenesis in the rat: Combined use of raloxifene and 9-cis-retinoic acid. J. Natl. Cancer Inst. 88:123–125.

    Google Scholar 

  9. B. S. Herbert, A. C. Wright, C. M. Passons, W. E. Wright, I. U. Ali, L. Kopelovich, and J.W. Shay (2001) Effects of chemopreventive and antitelomerase agents on the spontaneous immortalization of breast epithelial cells. J. Natl. Cancer Inst. 93:39–45.

    Google Scholar 

  10. M. Widschwendter, G. Daxenbichler, O. Dapunt, and C. Marth (1995). Effects of retinoic acid and ?-interferon on expression of retinoic acid receptor and cellular retinoic acid-binding protein in breast cancer cells. Cancer Res. 55:2135–2139.

    Google Scholar 

  11. A. N. Fanjul, H. Bouterfa, M. Dawson, and M. Pfahl (1996). Potential role for retinoic acid receptor-? in the inhibition of breast cancer cells by selective retinoids and interferons. Cancer Res. 56:1571–1577.

    Google Scholar 

  12. M. Widschwendter, G. Daxenbichler, Z. Culig, S. Michel, A. G. Zeimet, M. G. Mörtl, A. Widschwendter, and C. Marth (1997). Activity of retinoic acid receptor-? selectively binding retinoids alone and in combination with Interferon-? in breast cancer cell lines. Int. J. Cancer 71:497–504.

    Google Scholar 

  13. M. Widschwendter, A. Widschwendter, T. Welte, G. Daxenbichler, A. G. Zeimet, A. Bergant, J. Berger, J. P. Peyrat, C. Marth, and W. Doppler (1999). Retinoic acid modulates prolactin receptor expression and prolactin-induced Stat-5 activation in breast cancer cells in vitro. Brit. J. Cancer 79:204–210.

    Google Scholar 

  14. H. P. Ciolino, T. T. Y. Wang, and N. Sathyamoorthy (2000). Inhibition of aromatase activity and expression in MCF-7 cells by the chemopreventive retinoid N-(4-hydroxy-phenyl)-retinamide. Brit. J. Cancer. 83:333–337.

    Google Scholar 

  15. P. Chambon (1996). A decade of molecular biology of retinoic acid receptors. FASEB J. 10:940–954.

    Google Scholar 

  16. H. de The, A. Marchio, P. Tiollais, and A. Dejean (1989). Differential expression and ligand regulation of the retinoic acid receptor ? and ? genes. EMBO J. 8:429–433.

    Google Scholar 

  17. B. M. van der Leede, G. E. Folkers, F. A. E. Kruyt, and P. T. van der Saag (1992). Genomic organization of the human retinoic acid receptor ?2. Biochem. Biophys. Res. Commun. 188:695–702.

    Google Scholar 

  18. B. Hoffmann, J. M. Lehmann, X. K. Zhang, T. Hermann, M. Husmann, G. Graupner, and M. Pfahl (1990). Aretinoic acid receptor-specific element controls the retinoic acid receptor-? promoter. Mol. Endocrinol. 4:1727–1736.

    Google Scholar 

  19. X. K. Zhang, Y. Liu, M. O. Lee, and M. Pfahl (1994). A specific defect in the retinoic acid receptor associated with human lung cancer cell lines. Cancer Res. 54:5663–5669.

    Google Scholar 

  20. B. Houle, C. Rochette-Egly, and W. E. C. Bradley (1993). Tumor-suppressive effect of the retinoic acid receptor ? in human epidermoid lung cancer cells. Proc. Natl. Acad. Sci. U.S.A. 90:985–989.

    Google Scholar 

  21. X.-C. Xu, J. Y. Ro, J. S. Lee, D. M. Shin, W. K. Hong, and R. Lotan (1994). Differential expression of nuclear retinoid receptors in normal, premalignant and malignant head and neck tissues. Cancer Res. 54:3580–3587.

    Google Scholar 

  22. H. Qiu, W. Zhang, A. K. El-Naggar, S. M. Lippman, P. Lin, R. Lotan, and X.-C. Xu (1999). Loss of retinoic acid receptor-? expression is an early event during esophageal carcinogenesis. Amer. J. Pathol. 155:1519–1523.

    Google Scholar 

  23. X.-C. Xu, X. Liu, E. Tahara, S. M. Lippman, and R. Lotan (1999). Expression and up-regulation of retinoic acid receptor ? is associated with retinoid sensitivity and colony formation in esophageal cancer cell lines. Cancer Res. 59:2477–2483.

    Google Scholar 

  24. A. L. Sabichi, D. T. Hendricks, M. A. Bober, and M. J. Birrer (1998). Retinoic acid receptor ? expression and growth inhibition of gynecologic cancer cells by the synthetic retinoid N-(4-Hyroxyphenyl) Retinamide. J. Natl. Cancer. Inst. 90:597–605.

    Google Scholar 

  25. Y. Lotan, X-C. Xu, M. Shalev, R. Lotan, R. Williams, T. M. Wheeler, T. C. Thompson, and D. Kadmon (2000). Differential expression of nuclear retinoid receptors in normal and malignant prostates. J. Clin. Oncol. 18:116–121.

    Google Scholar 

  26. K. Swisshelm, K. Ryan, X. Lee, H. C. Tsou, M. Peacocke, and R. Sager (1994). Down-regulation of retinoic acid receptor ? in mammary carcinoma cell lines and its up-regulation in senescing normalmammaryepithelial cells. CellGrowth Differ. 5:133–141.

    Google Scholar 

  27. Y. Liu, M. Lee, H-G. Wang, Y. Li, Y. Hashimoto, M. Klaus, et al. (1996). Retinoic acid receptor ? mediates the growth-inhibitory effect of retinoic acid by promoting apoptosis in human breast cancer cells. Mol. Cell. Biol. 16:1138–1149.

    Google Scholar 

  28. X. Lee, S. P. Si, H. C. Tsou, and M. Peacocke (1995). Cellular aging and transformation suppression: A role for retinoic acid receptor ?2. Exp. Cell Res. 218:296–304.

    Google Scholar 

  29. T.N. Faria, C. Mendelsohn, P. Chambon, and L. J. Gudas (1999). The targeted disruption of both alleles of RAR?(2) in F9 cells results in the loss of retinoic acid-associated growth arrest. J. Biol. Chem. 274:26783–26788.

    Google Scholar 

  30. J. Berard, F. Laboune, M. Mukuna, S. Masse, R. Kothary, and W. E. C. Bradley (1996). Lung tumors in mice expressing an antisense RAR?2 transgene. FASEB J. 10:1091–1097.

    Google Scholar 

  31. M. Widschwendter, J. Berger, G. Daxenbichler, E. Müller-Holzner, A. Widschwendter, A. Mayr, C. Marth, and A. G. Zeimet (1997). Loss of retinoic acid receptor ? expression in breast cancer and morphologically normal adjacent tissue but not in the normal breast tissue distant from the cancer. Cancer Res. 57:4158–4161.

    Google Scholar 

  32. X-C. Xu, N. Sneige, X. Liu, R. Nandagiri, J. J. Lee, F. Lukmanji, G. Hortobagyi, S. M. Lippman, K. Dhingra, and R. Lotan (1997). Progressive decrease in nuclear retinoic acid receptor ? messenger RNA level during breast carcinogenesis. Cancer Res. 57:4992–4996.

    Google Scholar 

  33. K. M. Sommer, L. I. Chen, P. M. Treuting, L. T. Smith, and K. Swisshelm (1999). Elevated retinoic acid receptor ?4 protein in human breast tumor cells with nuclear and cytoplasmic localization. Proc. Natl. Acad. Sci. U.S.A. 96:8651–8656.

    Google Scholar 

  34. T. Ouchi, S. M. Lee, M. Ouchi, S. A. Aaronson, and C. M. Horvath (2000). Collaboration of signal transducer and activator of transcription 1 (STAT1) and BRCA1 in differential regulation of IFN-? target genes. Proc. Natl. Acad. Sci. U.S.A. 97:5208–5213.

    Google Scholar 

  35. V. Kolla, D. J. Lindner, W. Xiao, E. C. Borden, and D. V. Kalvakolanu (1996). Modulation of interferon (IFN)-inducible gene expression by retinoic acid. Up-regulation of STAT1 protein in IFN-unresponsive cells. J. Biol. Chem. 271:10508–10514.

    Google Scholar 

  36. Y. Shang, C. R. Baumrucker, and M. H. Green (1999). The induction and activation of STAT1 by all-trans-retinoic acid are mediated by RAR? signaling pathways in breast cancer cells. Oncogene 18:6725–6732.

    Google Scholar 

  37. R. K. Srivastava, A. R. Srivastava, Y. S. Cho-Chung, and D. L. Longo (1999). Synergistic effects of retinoic acid and 8-chloroadenosine 30,50-cyclic monophosphate on the regulation of retinoic acid receptor ? and apoptosis: Involvement of mitochondria. Clin. Cancer Res. 5:1892–1904.

    Google Scholar 

  38. X.-C. Xu, J. S. Lee, J. J. Lee, R. C. Morice, X. Liu, S. M. Lippman, W. K. Hong, and R. Lotan (1999). Nuclear retinoic acid receptor-? in bronchial epithelium of smokers before and during chemoprevention. J. Natl. Cancer Inst. 91:1317–1321.

    Google Scholar 

  39. R. Lotan, X. C. Xu, S. M. Lippman, J. Y. Ro, J. S. Lee, J. J. Lee, and W. K. Hong (1995). Suppression of retinoic acid receptor-? in premalignant oral lesions and its up-regulation by isotretinoin. N. Engl. J. Med. 332:1405–1410.

    Google Scholar 

  40. F.D. Urnov and A. P. Wolffe (2001). Above and within genome: Epigenetics past and present. J. Mam. Gland Biol. Neoplasia, 6(2):xx–xx.

    Google Scholar 

  41. L. M. Mielnicki, H. L. Asch, and B.B. Asch (2001). Genes, chromatin, and breast cancer: An epigenetic tale. J. Mam. Gland Biol. Neoplasia, 6(2):169–182.

    Google Scholar 

  42. S. Côté and R. L. Momparler (1997). Activation of the retinoic acid receptor-? gene by 5-aza-20-deoxycytidine in humanDLD-1 colon carcinoma cells. Anti-Cancer Drugs 8:56–61.

    Google Scholar 

  43. M. Widschwendter, J. Berger, M. Hermann, H. M. Müller, A. Amberger, M. Zeschnigk, A. Widschwendter, B. Abendstein, A. G. Zeimet, G. Daxenbichler, and C. Marth (2000). Methylation and silencing of the retinoic acid receptor?2 gene in breast cancer. J. Natl. Cancer Inst. 92:826–832.

    Google Scholar 

  44. E. E. Cameron, K. E. Bachman, S. Myöhänen, J. G. Herman, and S. B. Baylin (1999). Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat. Genet. 21:103–107.

    Google Scholar 

  45. A. Arapshian, Y. S. Kuppumbatti, and R. Mira-y-Lopez (2000). Methylation of conserved CpG sites neighboring the ? retinoic acid response element may mediate retinoic acid receptor ? gene silencing in MCF-7 breast cancer cells. Oncogene 19:4066–4070.

    Google Scholar 

  46. M. L. Gonzalgo and P. A. Jones (1997). Rapid quantitation of methylation differences at specific sites using methylationsensitive single nucleotide primer extension (Ms-SnuPE). Nucleic Acids Res. 25:2529–2531.

    Google Scholar 

  47. C. Salem, G. Liang, Y. C. Tsai, J. Coulter, M. A. Knowles, A.-C. Feng, S. Groshen, P. W. Nichols, and P. A. Jones (2000). Progressive increases in de novo methylation of CpG islands in bladder cancer. Cancer Res. 60:2473–2476.

    Google Scholar 

  48. G. Liang, K. D. Robertson, C. Talmadge, J. Sumegi, and P. A. Jones (2000). The gene for a novel transmembrane protein containing epidermal growth factor and follistatin domains is frequently hypermethylated in human tumor cells. Cancer Res. 60:4907–4912.

    Google Scholar 

  49. G. Deng, Y. Lu, G. Zlotnikov, A.D. Thor, and H. S. Smith (1996). Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science 274:2057–2059.

    Google Scholar 

  50. P. A. Jones and P. W. Laird (1999). Cancer epigenetics comes of age. Nat. Genet. 21:163–167.

    Google Scholar 

  51. Q. Wu, Y. Li, R. Liu, A. Agadir, M. O. Lee, Y. Liu, and X. Zhang (1997). Modulation of retinoic acid sensitivity in lung cancer cells through dynamic balance of orphan receptors nur77 and COUP-TF and their heterodimerization. EMBO J. 16:1656–1669.

    Google Scholar 

  52. S. M. Sirchia, A. T. Ferguson, E. Sironi, S. Subramanyan, R. Orlandi, S. Sukumar, and N. Sacchi (2000). Evidence of epigenetic changes affecting the chromatin state of the retinoic acid receptor ?2 promoter in breast cancer cells. Oncogene 19:1556–1563.

    Google Scholar 

  53. Q. Yang, I. Mori, L. Shan, M. Nakamura, Y. Nakamura, H. Utsunomiya, G. Yoshimura, T. Suzuma, T. Tamaki, T. Umemura, T. Sakurai, and K. Kakudo (2001). Biallelic inactivation of retinoic acid receptor ?2 gene by epigenetic change in breast cancer. Amer. J. Pathol. 158:299–303.

    Google Scholar 

  54. A. K. Virmani, A. Rathi, S. Zochbauer-Muller, N. Sacchi, Y. Fukuyama, D. Bryant, A. Maitra, S. Heda, K. M. Fong, F. Thunnissen, J. D. Minna, and A. F. Gazdar (2000). Promoter methylation and silencing of the retinoic acid receptor-? gene in lung carcinomas. J. Natl. Cancer Inst. 92:1303–1307.

    Google Scholar 

  55. P. W. Laird, L. Jackson-Grusby, A. Fazeli, S. L. Dickinson, W. E. Jung, E. Li, R. A. Weinberg, and R. Jaenisch (1995). Suppression of intestinal neoplasia by DNA hypomethylation. Cell 81:197–205.

    Google Scholar 

  56. L. E. Lantry, Z. Zhang, K. A. Crist, Y. Wang, G. J. Kelloff, R. A. Lubet, and M. You (1999). 5-Aza-20-deoxycytidine is chemopreventive in a 4-(methyl-nitrosamino)-1-(3-pyridyl)-1-butanone-induced primary mouse lung tumor model. Carcinogenesis 20:343–346.

    Google Scholar 

  57. S. B. Baylin and J. G. Herman (2000). DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 16:168–174.

    Google Scholar 

  58. M. Toyota and J. P. Issa (2000). The role of DNA hypermethylation in human neoplasia. Electrophoresis 21:329–333.

    Google Scholar 

  59. V. Bovenzi, N. L. Le, S. Cote, D. Sinnett, L. F. Momparler, and R. L. Momparler (1999). DNA methylation of retinoic acid receptor ? in breast cancer and possible therapeutic role of 5-aza-2?-deoxycytidine. Anticancer Drugs 10:471–476.

    Google Scholar 

  60. P. Wijermans, M. Lubbert, G. Verhoef, A. Bosly, C. Ravoet, M. Andre, and A. Ferrant (2000). Low-dose 5-aza-20-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: A multicentre phase II study in elderly patients 2000. J. Clin. Oncol. 18:956–962.

    Google Scholar 

  61. S. Minucci, V. Horn, N. Bhattacharyya, V. Russanova, V. V. Ogryzko, L. Gabriele, B. H. Howard, and K. Ozato (1997). A histone deacetylase inhibitor potentiates retinoid receptor action in embryonal carcinoma cells. Proc. Natl. Acad. Sci. U.S.A. 94:11295–11300.

    Google Scholar 

  62. W. A. Palmisano, K. K. Divine, G. Saccomanno, F. D. Gilliland, S.B. Baylin, J.G. Herman, and S. A. Belinsky (2000). Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res. 60:5954–5958.

    Google Scholar 

  63. J. M. Silva, G. Dominguez, J. M. Garcia, R. Gonzalez, M. J. Villanueva, F. Navarro, M. Provencio, S. San-Martin, P. Espana, and F. Bonilla (1999). Presence of tumor DNA in plasma of breast cancer patients: Clinicopathological correlations. Cancer Res. 59:3251–3256.

    Google Scholar 

  64. J. M. Silva, G. Dominguez, M. J. Villanueva, R. Gonzalez, J. M. Garcia, C. Corbacho, M. Provencio, P. Espana, and F. Bonilla (1999). Aberrant DNA methylation of the p16INK4a gene in plasma DNA of breast cancer patients. Brit. J. Cancer 80:1262–1264.

    Google Scholar 

  65. M. Esteller, M. Sanchez-Cespedes, R. Rosell, D. Sidransky, S.B. Baylin, and J. G. Herman (1999). Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from nonsmall cell lung cancer patients. Cancer Res. 59:67–70.

    Google Scholar 

  66. I. H. N. Wong, Y. M. D. Lo, J. Zhang, C-T. Liew, M. H. L. Ng, N. Wong, P. B. S. Lai, W. Y. Lau, N. M. Hjelm, and P. J. Johnson (1999). Detection of aberrant p16 methylation in the plasma and serum of liver cancer patients. Cancer Res. 59: 71–73.

    Google Scholar 

  67. X. Chen, H. Bonnefoi, S. Diebold-Berger, J. Lyautey, C. Lederrey, E. Faltin-Traub, M. Stroun, and P. Anker (1999). Detecting tumor-related alterations in plasma or serum DNA of patients diagnosed with breast cancer. Clin. Cancer. Res. 5:2297–2303.

    Google Scholar 

  68. M. B. Sporn (2000). Retinoids and demethylating agents— looking for partners. J. Natl. Cancer Inst. 92:780–781.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Widschwendter, M., Berger, J., Müller, H.M. et al. Epigenetic Downregulation of the Retinoic Acid Receptor-β2 Gene in Breast Cancer. J Mammary Gland Biol Neoplasia 6, 193–201 (2001). https://doi.org/10.1023/A:1011360724350

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011360724350

Navigation