Skip to main content
Log in

Nitric Oxide and Angiogenesis

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The steps required for new vessel growth are biologically complex and require coordinate regulation of contributing components, including modifications of cell–cell interactions, proliferation and migration of endothelial cells and matrix degradation. The observation that in vivo angiogenesis is accompanied by vasodilation, that many angiogenesis effectors possess vasodilating properties and that tumor vasculature is in a persistent state of vasodilation, support the existence of a molecular/biochemical link between vasodilation and angiogenesis. Several pieces of evidence converge in the indication of a role for nitric oxide (NO), the factor responsible for vasodilation, in physiological and pathological angiogenesis. Data originated in different labs indicate that NO can act both as an 'actor' of angiogenesis and as a 'director of angiogenesis', both functions being equally expressed during physiological and pathological processes. NO significantly contributes to the prosurvival/proangiogenic program of capillary endothelium by triggering and transducing cell growth and differentiation via endothelial-constitutive NO synthase (ec-NOS) activation, cyclic GMP (cGMP) elevation, mitogen activated kinase (MAPK) activation and fibroblast growth factor-2 (FGF-2) expression. Re-establishment of a balanced NO production in the central nervous system results in a reduction of cell damage during inflammatory and vascular diseases. Elevation of NOS activity in correlation with angiogenesis and tumor progression has been extensively reported in experimental and human tumors. In the brain, tumor expansion and edema formation are sensitive to NOS inhibition. On this basis, the nitric oxide pathway appears to be a promising target for consideration in pro- and anti-angiogenic therapeutic strategies. The use of NOS inhibitors seems appropriate to reduce edema, block angiogenesis and facilitate antitumor drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Furchgott RF, Zawadzki JV: The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 377-386, 1980

    Google Scholar 

  2. Palmer RMJ, Ferrige AS, Moncada S: Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524-526, 1987

    Google Scholar 

  3. Knowles RG, Moncada S: Nitric oxide synthases in mammals. Biochem J 298: 249-258, 1994

    Google Scholar 

  4. Morris SM, Billiar TR: New insights into the regulation of inducible nitric oxide synthesis. Am J Physiol 266: E829-E839, 1994

    Google Scholar 

  5. Michel T, XieQW, Nathan C: Molecular biological analysis of nitric oxide synthases. In: Feelisch M, Stamler J (eds) Methods in Nitric oxide Research. John Wiley and Sons, NY, 1996, pp 161-175

    Google Scholar 

  6. Gnanapandithen K, Chen Z, Kau CL, Gorenzynski RM, Marsden PA: Cloning and characterization of murine endothelial constitutive nitric oxide synthase. Biochimica et Biophysica Acta 1308: 103-106, 1996

    Google Scholar 

  7. Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC: Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377: 239-242, 1995

    Google Scholar 

  8. Lee PC, Salyapongse AN, Bragdon GA, Shears LL 2nd, Watkins SC, Edington HD, Billiar TR: Impaired wound healing and angiogenesis in eNOS-deficient mice. Am J Physiol 277: H1600-H1608, 1999

    Google Scholar 

  9. MacMicking JD, Nathan C, Hom G, Chartrain N, Fletcher DS, Trumbauer M, Stevens K, Xie Q-W, Sokol K, Hutchinson N, Chen H, Mudgett JS: Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81: 641-650, 1995

    Google Scholar 

  10. Huang PL, Dawson TM, Bredt DS, Snyder SH, Fishman MC: Targeted disruption of the neuronal nitric oxide synthase gene. Cell 175: 1273-1286, 1993

    Google Scholar 

  11. Moncada S, Palmer RMJ, Higgs A: Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43: 109-142, 1991

    Google Scholar 

  12. Wink DA, Hanbauer I, Laval F, Cook JA, Krishna MC, Mitchell JB: Nitric oxide protects against the cytotoxic effects of reactive oxygen species. Ann NY Acad Sci 738: 265-278, 1994

    Google Scholar 

  13. Ziche M, Morbidelli L, Pacini M, Geppetti P, Alessandri G, Maggi CA: Substance P stimulates neovascularization in vivo and proliferation of cultured endothelial cells. Microvasc Res 40: 264-278, 1990

    Google Scholar 

  14. Morbidelli L, Parenti A, Giovannelli L, Granger HJ, Ledda F, Ziche M: Bi receptor involvement in the effect of bradykinin on venular endothelial cell proliferation and potentiation of FGF-2 effects. Br J Pharmacol 124(6): 1286-1292, 1998

    Google Scholar 

  15. Pipili-Synetos B, Sakkoula B, Maragoudakis ME: Nitric oxide is involved in the regulation of angiogenesis. Br J Pharmacol 108: 855-857, 1993

    Google Scholar 

  16. Leibovicz JS, Polverini PJ, Fong TW, Harlow LA, Kock AE: Production of angiogenic activity by human monocytes requires an L-arginine/nitric oxide-synthasedependent effector mechanism. Proc Natl Acad Sci USA 91: 4190-4194, 1994

    Google Scholar 

  17. Montrucchio G, Lupia B, De Martino A, Battaglia B, Arese M, Tizzani A, Bussolino F, Camussi G: Nitric oxide mediates angiogenesis induced in vivo by platelet-activating factor and tumor necrosis factor. AmJ Pathol 151: 557-563, 1997

    Google Scholar 

  18. Brzozowski T, Kounturek SJ, Drozdowicz D, Dembinski A, Stachura J: Healing of chronic gastric ulcerations by L-arginine. Digestion 56: 463-471, 1995

    Google Scholar 

  19. Ziehe M, Morbidelli L, Masini B, Granger HJ, Geppetti G, Ledda F: Nitric oxide promotes DNA synthesis and cyclic GMP formation in endothelial cells from postcapillary venules. Biochem Biophys Res Commun 192(3): 1198-1203, 1993

    Google Scholar 

  20. Ziche M, Morbidelli L, Masini B, Amerini S, Granger HJ, Maggi CA, Geppetti P, Ledda F: Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest 94: 2036-2044, 1994

    Google Scholar 

  21. Ziche M, Morbidelli L, Parenti A, Amerini S, Granger HJ, Maggi CA: Substance P increases cyclic GMP levels on coronary postcapillary venular endothelial cells. Life Sci 53: 1105-1112, 1993

    Google Scholar 

  22. Ziche M, Morbidelli L, Choudhuri R, Zhang H-T, Donnini S, Granger HJ, Bicknell R: Nitric oxide-synthase lies downstream of vascular endothelial growth factor but not basic fibroblast growth factor induced angiogenesis. J Clin Invest 99: 2625-2634, 1997

    Google Scholar 

  23. Ziche M, Parenti A, Ledda F, Dell'Era P, Granger HJ, Maggi CA, Presta M: Nitric oxide promotes proliferation and plasminogen activator production by coronary venular endothelium through endogenous bFGF. Circ Res 80: 845-852, 1997

    Google Scholar 

  24. Ferrara N, Davis-Smyth T: The biology of vascular endothelial growth factor. Endocrine Reviews 18: 4-25, 1997

    Google Scholar 

  25. Ku DD, Zaleski JK, Lin S, Brock TA: Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries. Am J Physiol 265: H586-H592, 1993

    Google Scholar 

  26. Wu HM, Qiaobing H, Yuan Y, Granger HJ: VEGF induces NO-dependent hyperpermeability in coronary venules. Am J Physiol 269(38): C1371-C1378, 1996

    Google Scholar 

  27. Morbidelli L, Chang C-H, Douglas JG, Granger HJ, Ledda F, Ziche M: Nitric oxide mediates the mitogenic effect of VEGF on coronary venular endothelium. Am J Physiol 270(39): H411-H415, 1996

    Google Scholar 

  28. Hood JD, Ziche M, Granger HG: VEGE upregulates ecNOS message, protein, and NO production. Am J Physiol 274: H1054-H1058, 1998

    Google Scholar 

  29. Hood J, Granger HJ: Protein kinase C mediates vascular endothelial growth factor-induced raf-1 activation and proliferation in human endothelial cells. J Biol Chem 273: 23504-23508, 1998

    Google Scholar 

  30. Parenti A, Morbidelli L, Cui XL, Douglas JG, Hood J, Granger HJ, Ledda F, Ziche M: Nitric oxide is an upstream signal for vascular endothelial growth factor-induced extracellular signal-regulated kinases 1/2 activation in postcapillary endothelium. J Biol Chem 273: 4220-4226, 1998

    Google Scholar 

  31. Salom JB, Orti M, Centeno JM, Torregrosa G, Alborch E: Reduction of infarct size by the NO donors sodium nitroprusside and spermine/NO after transient focal cerebral ischemia in rats. Brain Res 865: 149-156, 2000

    Google Scholar 

  32. Cobbs CS, Brenman JE, Alpade KD, Bredt DS, Israel MA: Expression of nitric oxide synthase in human central nervous system tumors. Cancer Res 55: 727-730, 1995

    Google Scholar 

  33. Thomsen LL, Lawton FG, Knowles RG, Beesley JE, Riveros-Moreno V, Moncada S: Nitric oxide synthase activity in human gynecological cancer. Cancer Res 54: 1352-1354, 1994

    Google Scholar 

  34. Thomsen LL, Miles DW, Happerfield L, Bobrow LG, Knowles RG, Moncada S: Nitric oxide synthase activity in human breast cancer. Br J Cancer 72: 41-44, 1995

    Google Scholar 

  35. Gallo O, Masini E, Morbidelli L, Franchi A, Fini-Storchi I, Vergari WA, Ziche M: Role of nitric oxide in angiogenesis and tumor progression in head and neck cancer. J Natl Cancer Inst 90: 587-596, 1998

    Google Scholar 

  36. Klotz T, Bloch W, Jacobs G, Niggemann S, Englemann U, Addicks K: Immunolocalization of inducible and constitutive nitric oxide synthases in human bladder cancer. Urology 54: 416-419, 1999

    Google Scholar 

  37. Klotz T, Bloch W, Volberg C, Englemann U, Addicks K: Selective expression of inducible nitric oxide synthase in human prostate carcinoma. Cancer 82: 1897-1903, 1998

    Google Scholar 

  38. Thomsen LL, Miles DW: Role of nitric oxide in tumor progression: Lessons from human tumors. Cancer Metast Rev 17: 107-118, 1998

    Google Scholar 

  39. Thomsen LL, Scott JMJ, Topley P, Knowles RG, Keerie AJ, Frend AJ: Selective inhibition of inducible nitric oxide synthase inhibits tumor growth in vivo. Studies with 1400W, a novel inhibitor. Cancer Res 57: 3300-3304, 1997

    Google Scholar 

  40. Fukumura D, Jain RK: Role of nitric oxide in angiogenesis and microcirculation in tumors. Cancer Metast Rev 17: 77-89, 1998

    Google Scholar 

  41. Jenkins DC, Charles IG, Thomsen LL, Moss DW, Holmes LS, Baylis SA, Rhodes P, Westmore K, Emson PC, Moncada S: Role of nitric oxide in tumor angiogenesis. Proc Natl Acad Sci USA 92: 4392-4396, 1995

    Google Scholar 

  42. Ghigo D, Arese M, Todde R, Vecchi A, Silvagno F, Costamagna C, Dong QG, Alessio M, Heller R, Soldi R: Middle T antigen-transformed endothelial cells exhibit an increased activity of nitric oxide synthase. J Exp Med 181: 9-19, 1995

    Google Scholar 

  43. Orucevic A, Lala PK: NG-nitroL-arginine methyl ester, an inhibitor of nitric oxide synthesis, ameliorates interleukin 2-induced capillary leakage and reduces tumor growth in adenocarcinoma-bearing mice. Br J Cancer 73: 189-196, 1996

    Google Scholar 

  44. Doi K, Akaike T, Horie H, Noguchi Y, Fuji S, Beppu T, OgawaM, Maeda H: Excessive production ofNO in rat solid tumor and its implication in rapid tumor growth. Cancer 77: 1598-1604, 1996

    Google Scholar 

  45. Wolff JEA, Guerin C, Laterra J, Bressler J, Indurti RR, Brem H, Goldstein GW: Dexamethasone reduces vascular density and plasminogen activator activity in 9L rat brain tumors. Brain Res 604: 79-85, 1993

    Google Scholar 

  46. Zhang H-T, Craft P, Scott PAE, Ziche M, Weich HA, Harris AL, Bicknell R: Enhancement of tumor growth and vascular density by transfection of vascular endothelial cell growth factor into MCF-7 human breast carcinoma cells. J Natl Cancer Inst 87: 213-217, 1995

    Google Scholar 

  47. Jadeski LC, Lala PK: Nitric oxide synthase inhibition by N(G)-intro-L-arginine methyl ester inhibits tumor induced angiogenesis in mammary tumors. Am J Pathol 155: 1381-1390, 1999

    Google Scholar 

  48. Orucevic A, Bechberger J, Green AM, Shapiro RA, Billiar TR, Lala PK: Nitric oxide production by mammary adenocarcinoma cells promotes tumor-cell invasiveness. Int J Cancer 81: 889-896, 1999

    Google Scholar 

  49. Stuher DJ, Nathan CF: Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med 169: 1543-1555, 1989

    Google Scholar 

  50. Albina JE, Reichner JS: Role of nitric oxide in mediation of macrophage cytotoxicity and apoptosis. Cancer Metast Rev 17: 39-53, 1998

    Google Scholar 

  51. Xie K, Huang S, Dong Z, Juang S-H, Gutman M, Xie Q-W, Nathan C, Fidler IJ: Transfection with inducible nitric oxide synthase gene suppresses tumorgenicity and abrogates metastasis in K-1735 murine melanoma cells. J Exp Med 181: 1333-1343, 1995

    Google Scholar 

  52. Xie K, Fidler IJ: Therapy of cancer metastasis by activation of the inducible nitric oxide synthase. Cancer Metast Rev 17: 55-75, 1998

    Google Scholar 

  53. Xie K, Huang S, Dong Z, Juang S-H, Wang Y, Fidler IJ: Destruction of bystander cells by tumor cells transfected with inducible nitric oxide (NO) synthase gene. J Natl Cancer Inst 89: 421-427, 1997

    Google Scholar 

  54. Ambs S, Hussain SP, Harris CC: Interactive effects of nitric oxide and the p53 tumor suppressor gene in carcinogenesis and tumor progression. FASEB J 11: 443-448, 1997

    Google Scholar 

  55. Ambs S, Merriam WG, Ogunfusika MO, Bennet WP, Ishibe N, Hussain SP, Tzeng FL, Geller DA, Billiar TR, Harris CC: p53 and vascular endothelial growth factor regulate tumor growth of NOS-2 expressing human carcinoma cells. Nat Medi 4: 1371-1376, 1998

    Google Scholar 

  56. Wink D, Kasprazak K, Maragos C, Elespuru R, Misra M, Dumus T, Cebula T, Koch W, Andrews A, Allan J, Keefer L: DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254: 1001-1003, 1991

    Google Scholar 

  57. Nicotera P, Bernassola F, Melino G: Nitric oxide (NO), a signaling molecule with a killer soul. Cell Death Differ 6: 931-933, 1999

    Google Scholar 

  58. Beckman JS, Koppenol WH: Nitric oxide, superoxide and peroxynitrite: the good, the bad and the ugly. Am J Physiol 271: C1424-C1437, 1996

    Google Scholar 

  59. Ellie F, Loiseau H, Lafond F, Arsaut J, Demotes-Mainard J: Differential expression of inducible nitric oxide synthase in human brain tumors. Neuroreport 7: 294-296, 1995

    Google Scholar 

  60. Fujisawa H, Ogura T, Hokari A, Weisz A, Yamashita J, Esumi H: Inducible nitric oxide synthase in a human glioblastoma cell line. J Neurochem 64: 85-91, 1995

    Google Scholar 

  61. Hara E, Takahashi K, Tominaga T, Kumabe T, Kayama T, Suzuki H, Fujita H, Yoshimoto T, Shirato K, Shibahara S: Expression of heme oxygenase and inducible nitric oxide synthase mRNA in human brain tumors. Biochem Biophys Res Commun 224(l): 153-158, 1996

    Google Scholar 

  62. Bakshi A, Nag TC, Wadhwa S, Mahapatra AK, Sarkar C: The expression of nitric oxide in human brain tumors and peritumoral areas. J Neurol Sci 155(2): 196-203, 1998

    Google Scholar 

  63. Iwata S, Nakagawa K, Harada H, Oka Y, Kumon Y, Sakaki S: Endothelial nitric oxide synthase expression in tumor vasculature is correlated with malignancy in human supratentorial astrocytic tumors. Neurosurgery 45: 24-28, 1999

    Google Scholar 

  64. Munoz-Fernandez MA, Fresno M: Involvement of nitric oxide on the cytokine induced growth of glial cell. Biochem Biophys Res Commun 194: 319-325, 1993

    Google Scholar 

  65. Ferrante R, Kowall N, Beal ME, Richardson EP Jr, Bird ED, Martin JB: Selective sparing of a class of striatal neurons in Huntington's disease. Science(Washington DC) 230: 561-563, 1985

    Google Scholar 

  66. Stoll G, Jander S, Schroeter M: Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol 56: 149-171, 1998

    Google Scholar 

  67. Yuan F, Salehi HA, Boucher Y, Vasthare US, Tuma RE, Jain RK: Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res 54: 4564-4568, 1994

    Google Scholar 

  68. Tozer GM, Prise VE, Chaplin DJ: Inhibition of nitric oxide synthase induces a selective reduction in tumor blood flow that is reversible with L-arginine. Cancer Res 57: 948-955, 1997

    Google Scholar 

  69. Fukumura D, Yan F, Endo M, Jain RK: Role of nitric oxide in tumor microcirculation. Blood flow, vascular permeability, and leukocyte-endothelial interactions. Am J Pathol 150: 713-725, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziche, M., Morbidelli, L. Nitric Oxide and Angiogenesis. J Neurooncol 50, 139–148 (2000). https://doi.org/10.1023/A:1006431309841

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006431309841

Navigation