Nitrogen-containing metabolites from marine cyanobacteria

https://doi.org/10.1016/S0099-9598(01)57003-0Get rights and content

Publisher Summary

Marine cyanobacteria are extraordinarily prolific in their elaboration of complex and bioactive secondary metabolites. The principle biogenetic theme in the natural products chemistry of marine cyanobacteria is the integration of non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) pathways, in a variety of configurations, so as to produce this great structural diversity. An assortment of unusual “tailoring” enzymes is evident in cyanobacterial metabolites, as revealed by the variety of bromine and chlorine functional groups. Methylation is a prominent characteristic of most marine cyanobacterial metabolites. Cyanobacterial peptides possess an extremely high level of N-methylation, a characteristic that could possibly be advantageous in molecular genetic studies. In polyketide sections, a pronounced theme of pendant methyl groups is also evident. However, available experimental evidence suggests either a or C-2 of acetate origin for these methyl group additions. Many marine cyanobacterial metabolites possess potent biological properties.

References (271)

  • R.E Moore
  • R.E Moore
  • D.J Schaeffer et al.

    Ecoioxicol. Environ. Saf.

    (2000)
  • L Soliakov et al.

    Neuropharmacology

    (1995)
  • W.J Adelman et al.

    Toxicon

    (1982)
  • J.H Cardellina et al.

    Tetrahedron Lett.

    (1979)
  • J Bergman et al.

    Tetrahedron

    (1988)
  • H.-J Knolker et al.

    Tetrahedron Lett.

    (1995)
  • T Choshi et al.

    Tetrahedron Lett.

    (1996)
  • H.-J Knolker et al.

    Tetrahedron

    (1999)
  • J Rodriguez et al.

    Tetrahedron Lett.

    (1994)
  • J Orjala et al.

    Phytochemistry

    (1997)
  • S.W Hunsucker et al.

    Anal. Biochem.

    (2001)
  • F.-J Marner et al.

    Phytochemistry

    (1978)
  • C.J Simmons et al.

    Tetrahedron Lett.

    (1979)
  • J.H Cardellina et al.

    Tetrahedron Lett.

    (1979)
  • R Mechoulam et al.

    Eur. J. Pharmacol.

    (1998)
  • D.G Nagle et al.

    Tetrahedron Lett.

    (1995)
  • T Onoda et al.

    Tetrahedron Lett.

    (1995)
  • T Onoda et al.

    Tetrahedron

    (1996)
  • J.-Y Lai et al.

    Tetrahedron Lett.

    (1996)
  • T Onoda et al.

    Tetrahedron Lett.

    (1996)
  • H Ito et al.

    Tetrahedron Lett.

    (1996)
  • M.Z Hoemann et al.

    Tetrahedron

    (1997)
  • J.C Muir et al.

    Tetrahedron Lett.

    (1998)
  • B Marquez et al.

    Phytochemistry

    (1998)
  • P Verdier-Pinard et al.

    Arch. Biochem. Biophys.

    (1999)
  • R.T Williamson et al.

    Tetrahedron Lett.

    (1999)
  • N Sitachitta et al.

    Tetrahedron

    (2000)
  • G.M Lee et al.

    Tetrahedron Lett.

    (1992)
  • W.H Gerwick et al.
  • D Panda et al.
  • R.E Moore

    Pure Appl. Chem.

    (1982)
  • W.W Carmichael

    J. Appl. Bacteriol.

    (1992)
  • W.H Gerwick et al.

    J. Appl. Phycol.

    (1994)
  • G.M.L Patterson et al.

    J. Appl. Phycol.

    (1994)
  • H.L Sings et al.

    J. Ind. Microbiol.

    (1996)
  • M Namikoshi et al.

    J. Ind. Microbiol.

    (1996)
  • D.G Nagle et al.

    J. Phycol.

    (1999)
  • R.E Moore et al.

    Curr. Pharm. Des.

    (1996)
  • M Jaspars et al.

    Curr. Opin. Drug Discovery Dev.

    (1988)
  • D.J Faulkner

    Nat. Prod. Rep.

    (2001)
  • T.V Desikachary

    Cyanophyta

  • W.W Carmichael et al.

    Appl. Environ. Microbiol.

    (1997)
  • K.L Swanson et al.

    Mol. Pharmacol.

    (1986)
  • D.G.I Kingston et al.

    J. Am. Chem. Soc.

    (1983)
  • J Needham et al.

    J. Chem. Soc., Chem. Commun.

    (1992)
  • S Kato et al.

    J. Antibiotics

    (1989)
  • M Tanaka et al.

    J. Antibiotics

    (1995)
  • K Yamasaki et al.

    J. Antibiotics

    (1983)
  • Cited by (0)

    View full text