Skip to main content

Advertisement

Log in

MicroRNAs involved in chemo- and radioresistance of high-grade gliomas

  • Review
  • Published:
Tumor Biology

Abstract

High-grade gliomas (HGGs) are malignant primary brain tumors of glial cell origin. Despite optimal course of treatment, including maximal surgical resection followed by adjuvant chemo- and/or radiotherapy, the prognosis still remains poor. The main reason is the commonly occurring chemo- and radioresistance of these tumors. In recent years, several signaling pathways, especially PI3K/AKT and ATM/CHK2/p53, have been linked to the resistance of gliomas. Moreover, additional studies have shown that these pathways are significantly regulated by microRNAs (miRNAs), short endogenous RNA molecules that modulate gene expression and control many biological processes including apoptosis, proliferation, cell cycle, invasivity, and angiogenesis. MiRNAs are not only highly deregulated in gliomas, their expression signatures have also been shown to predict prognosis and therapy response. Therefore, they present promising biomarkers and therapeutic targets that might overcome the resistance to treatment and improve prognosis of glioma patients. In this review, we summarize the current knowledge of the functional role of miRNAs in gliomas resistance to chemo- and radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Srinivasan S, Patric IR, Somasundaram K. A ten-microRNA expression signature predicts survival in glioblastoma. PLoS One. 2011;6(3):e17438. doi:10.1371/journal.pone.0017438.

    Article  PubMed  CAS  Google Scholar 

  2. Rajaraman P, Melin BS, Wang Z, McKean-Cowdin R, Michaud DS, Wang SS, et al. Genome-wide association study of glioma and meta-analysis. Hum Genet. 2012. doi:10.1007/s00439-012-1212-0.

  3. van den Bent MJ. Anaplastic oligodendroglioma and oligoastrocytoma. Neurol Clin. 2007;25(4):1089–109. doi:10.1016/j.ncl.2007.07.013. ix–x.

    Article  PubMed  Google Scholar 

  4. Butowski NA, Sneed PK, Chang SM. Diagnosis and treatment of recurrent high-grade astrocytoma. J Clin Oncol. 2006;24(8):1273–80. doi:10.1200/jco.2005.04.7522.

    Article  PubMed  CAS  Google Scholar 

  5. Chen L, Han L, Shi Z, Zhang K, Liu Y, Zheng Y, et al. LY294002 enhances cytotoxicity of temozolomide in glioma by down-regulation of the PI3K/Akt pathway. Mol Med Rep. 2012;5(2):575–9. doi:10.3892/mmr.2011.674.

    PubMed  CAS  Google Scholar 

  6. Gwak HS, Kim TH, Jo GH, Kim YJ, Kwak HJ, Kim JH, et al. Silencing of microRNA-21 confers radio-sensitivity through inhibition of the PI3K/AKT pathway and enhancing autophagy in malignant glioma cell lines. PLoS One. 2012;7(10):e47449. doi:10.1371/journal.pone.0047449.

    Article  PubMed  CAS  Google Scholar 

  7. Squatrito M, Brennan CW, Helmy K, Huse JT, Petrini JH, Holland EC. Loss of ATM/Chk2/p53 pathway components accelerates tumor development and contributes to radiation resistance in gliomas. Cancer Cell. 2010;18(6):619–29. doi:10.1016/j.ccr.2010.10.034.

    Article  PubMed  CAS  Google Scholar 

  8. Wang J, Wakeman TP, Lathia JD, Hjelmeland AB, Wang X-F, White RR, et al. Notch promotes radioresistance of glioma stem cells. Stem Cells. 2010;28(1):17–28. doi:10.1002/stem.261.

    PubMed  CAS  Google Scholar 

  9. Yamada R, Nakano I. Glioma stem cells: their role in chemoresistance. World Neurosurg. 2012;77(2):237–40. doi:10.1016/j.wneu.2012.01.004.

    Article  PubMed  Google Scholar 

  10. Ambros V. microRNAs: tiny regulators with great potential. Cell. 2001;107(7):823–6.

    Article  PubMed  CAS  Google Scholar 

  11. Auffinger B, Thaci B, Ahmed A, Ulasov I, Lesniak MS. (2012) MicroRNA targeting as a therapeutic strategy against glioma. Curr Mol Med. Epub ahead of print

  12. Yu KN, Han W. Ionizing radiation, DNA double strand break, and mutation. In: Urbano KV, editor. Advances in Genetics Research, 4. New York: Nova Science Publishers, Inc; 2010. ISBN 978-1-61728-764-0.

    Google Scholar 

  13. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96. doi:10.1056/NEJMoa043330.

    Article  PubMed  CAS  Google Scholar 

  14. Lee KM, Choi EJ, Kim IA. microRNA-7 increases radiosensitivity of human cancer cells with activated EGFR-associated signaling. Radiother Oncol. 2011;101(1):171–6. doi:10.1016/j.radonc.2011.05.050.

    Article  PubMed  CAS  Google Scholar 

  15. Narayan RS, Fedrigo CA, Stalpers LJ, Baumert BG, Sminia P. Targeting the Akt-pathway to improve radiosensitivity in glioblastoma. Curr Pharm Des. 2013;19(5):951–7.

    Article  PubMed  CAS  Google Scholar 

  16. Kwiatkowska A, Symons M. Signaling determinants of glioma cell invasion. Adv Exp Med Biol. 2013;986:121–41. doi:10.1007/978-94-007-4719-7_7.

    Article  PubMed  Google Scholar 

  17. Guillamo J-S, de Boüard S, Valable S, Marteau L, Leuraud P, Marie Y, et al. Molecular mechanisms underlying effects of epidermal growth factor receptor inhibition on invasion, proliferation, and angiogenesis in experimental glioma. Clin Cancer Res. 2009;15(11):3697–704. doi:10.1158/1078-0432.ccr-08-2042.

    Article  PubMed  CAS  Google Scholar 

  18. Chen G, Zhu W, Shi D, Lv L, Zhang C, Liu P, et al. MicroRNA-181a sensitizes human malignant glioma U87MG cells to radiation by targeting Bcl-2. Oncol Rep. 2010;23(4):997–1003.

    PubMed  CAS  Google Scholar 

  19. Hara T, Omura-Minamisawa M, Kang Y, Cheng C, Inoue T. Flavopiridol potentiates the cytotoxic effects of radiation in radioresistant tumor cells in which p53 is mutated or Bcl-2 is overexpressed. Int J Radiat Oncol Biol Phys. 2008;71(5):1485–95. doi:10.1016/j.ijrobp.2008.03.039.

    Article  PubMed  CAS  Google Scholar 

  20. Zhou X, Ren Y, Moore L, Mei M, You Y, Xu P, et al. Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Invest. 2010;90(2):144–55. doi:10.1038/labinvest.2009.126.

    Article  PubMed  CAS  Google Scholar 

  21. Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH, et al. The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev. 2009;23(11):1327–37. doi:10.1101/gad.1777409.

    Article  PubMed  CAS  Google Scholar 

  22. Kim H, Huang W, Jiang X, Pennicooke B, Park PJ, Johnson MD. Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proc Natl Acad Sci USA. 2010;107(5):2183–8. doi:10.1073/pnas.0909896107.

    Article  PubMed  CAS  Google Scholar 

  23. Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M, et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res. 2008;68(10):3566–72. doi:10.1158/0008-5472.can-07-6639.

    Article  PubMed  CAS  Google Scholar 

  24. Nan Y, Han L, Zhang A, Wang G, Jia Z, Yang Y, et al. MiRNA-451 plays a role as tumor suppressor in human glioma cells. Brain Res. 2010;1359:14–21. doi:10.1016/j.brainres.2010.08.074.

    Article  PubMed  CAS  Google Scholar 

  25. Fell VL, Schild-Poulter C. Ku regulates signaling to DNA damage response pathways through the Ku70 von Willebrand A domain. Mol Cell Biol. 2012;32(1):76–87. doi:10.1128/mcb.05661-11.

    Article  PubMed  CAS  Google Scholar 

  26. Westhoff MA, Kandenwein JA, Karl S, Vellanki SHK, Braun V, Eramo A, et al. The pyridinylfuranopyrimidine inhibitor, PI-103, chemosensitizes glioblastoma cells for apoptosis by inhibiting DNA repair. Oncogene. 2009;28(40):3586–96. doi:10.1038/onc.2009.215.

    Article  PubMed  CAS  Google Scholar 

  27. Ng WL, Yan D, Zhang X, Mo Y-Y, Wang Y. Over-expression of miR-100 is responsible for the low-expression of ATM in the human glioma cell line: M059J. DNA Repair. 2010;9(11):1170–5. doi:10.1016/j.dnarep.2010.08.007.

    Article  PubMed  CAS  Google Scholar 

  28. Chaudhry MA, Sachdeva H, Omaruddin RA. Radiation-induced micro-RNA modulation in glioblastoma cells differing in DNA-repair pathways. DNA Cell Biol. 2010;29(9):553–61. doi:10.1089/dna.2009.0978.

    Article  PubMed  CAS  Google Scholar 

  29. Chaudhry MA, Kreger B, Omaruddin RA. Transcriptional modulation of micro-RNA in human cells differing in radiation sensitivity. Int J Radiat Biol. 2010;86(7):569–83. doi:10.3109/09553001003734568.

    Article  PubMed  CAS  Google Scholar 

  30. Lin Y-X, Yu F, Gao N, Sheng J-P, Qiu J-Z, Hu B-C. microRNA-143 protects cells from DNA damage-induced killing by downregulating FHIT expression. Cancer Biother Radiopharm. 2011;26(3):365–72. doi:10.1089/cbr.2010.0914.

    Article  PubMed  CAS  Google Scholar 

  31. Babar IA, Czochor J, Steinmetz A, Weidhaas JB, Glazer PM, Slack FJ. Inhibition of hypoxia-induced miR-155 radiosensitizes hypoxic lung cancer cells. Cancer Biol Ther. 2011;12(10):908–14. doi:10.4161/cbt.12.10.17681.

    Article  PubMed  CAS  Google Scholar 

  32. Yan D, Ng WL, Zhang X, Wang P, Zhang Z, Mo Y-Y, et al. Targeting DNA-PKcs and ATM with miR-101 sensitizes tumors to radiation. PLoS ONE. 2010;5(7):e11397. doi:10.1371/journal.pone.0011397.

    Article  PubMed  Google Scholar 

  33. Chen S, Wang H, Ng WL, Curran WJ, Wang Y. Radiosensitizing effects of ectopic miR-101 on non-small-cell lung cancer cells depend on the endogenous miR-101 level. Int J Radiat Oncol Biol Phys. 2011;81(5):1524–9. doi:10.1016/j.ijrobp.2011.05.031.

    Article  PubMed  CAS  Google Scholar 

  34. Nakano I, Kornblum HI. Brain tumor stem cells. Pediatr Res. 2006;59(4 Pt 2):54R–8R. doi:10.1203/01.pdr.0000203568.63482.f9.

    Article  PubMed  Google Scholar 

  35. Mueller AC, Sun D, Dutta A. The miR-99 family regulates the DNA damage response through its target SNF2H. Oncogene. 2012. doi:10.1038/onc.2012.131.

    Google Scholar 

  36. Mirzayans R, Andrais B, Scott A, Murray D. New insights into p53 signaling and cancer cell response to DNA damage: implications for cancer therapy. J Biomed Biotechnol. 2012. doi:10.1155/2012/170325.

    PubMed  Google Scholar 

  37. Le MTN, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V, et al. MicroRNA-125b is a novel negative regulator of p53. Genes Dev. 2009;23(7):862–76. doi:10.1101/gad.1767609.

    Article  PubMed  CAS  Google Scholar 

  38. Luan S, Sun L, Huang F. MicroRNA-34a: a novel tumor suppressor in p53-mutant glioma cell line U251. Arch Med Res. 2010;41(2):67–74. doi:10.1016/j.arcmed.2010.02.007.

    Article  PubMed  CAS  Google Scholar 

  39. Sasaki A, Udaka Y, Tsunoda Y, Yamamoto G, Tsuji M, Oyamada H, et al. Analysis of p53 and miRNA expression after irradiation of glioblastoma cell lines. Anticancer Res. 2012;32(11):4709–13.

    PubMed  CAS  Google Scholar 

  40. Carmo A, Carvalheiro H, Crespo I, Nunes I, Lopes MC. Effect of temozolomide on the U-118 glioma cell line. Oncol Lett. 2011;2(6):1165–70. doi:10.3892/ol.2011.406.

    PubMed  CAS  Google Scholar 

  41. Darkes MJM, Plosker GL, Jarvis B. Temozolomide: a review of its use in the treatment of malignant gliomas, malignant melanoma and other advanced cancers. Am J Cancer. 2002;1(1):55–80.

    Article  CAS  Google Scholar 

  42. Sharma S, Salehi F, Scheithauer BW, Rotondo F, Syro LV, Kovacs K. Role of MGMT in tumor development, progression, diagnosis, treatment, and prognosis. Anticancer Res. 2009;29(10):3759–68.

    PubMed  CAS  Google Scholar 

  43. Slaby O, Lakomy R, Fadrus P, Hrstka R, Kren L, Lzicarova E, et al. MicroRNA-181 family predicts response to concomitant chemoradiotherapy with temozolomide in glioblastoma patients. Neoplasma. 2010;57(3):264–9.

    Article  PubMed  CAS  Google Scholar 

  44. Zhang W, Zhang J, Hoadley K, Kushwaha D, Ramakrishnan V, Li S, et al. miR-181d: a predictive glioblastoma biomarker that downregulates MGMT expression. Neuro Oncol. 2012;14(6):712–9. doi:10.1093/neuonc/nos089.

    Article  PubMed  CAS  Google Scholar 

  45. Zhang S, Wan Y, Pan T, Gu X, Qian C, Sun G, et al. MicroRNA-21 inhibitor sensitizes human glioblastoma U251 stem cells to chemotherapeutic drug temozolomide. J Mol Neurosci. 2012;47(2):346–56. doi:10.1007/s12031-012-9759-8.

    Article  PubMed  CAS  Google Scholar 

  46. Ren Y, Kang C-S, Yuan X-B, Zhou X, Xu P, Han L, et al. Co-delivery of as-miR-21 and 5-FU by poly(amidoamine) dendrimer attenuates human glioma cell growth in vitro. J Biomater Sci Polym Ed. 2010;21(3):303–14. doi:10.1163/156856209x415828.

    Article  PubMed  CAS  Google Scholar 

  47. Shi L, Chen J, Yang J, Pan T, Zhang S, Wang Z. MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity. Brain Res. 2010;1352:255–64. doi:10.1016/j.brainres.2010.07.009.

    Article  PubMed  CAS  Google Scholar 

  48. Zhou X, Zhang J, Jia Q, Ren Y, Wang Y, Shi L, et al. Reduction of miR-21 induces glioma cell apoptosis via activating caspase 9 and 3. Oncol Rep. 2010;24(1):195–201.

    PubMed  CAS  Google Scholar 

  49. Wong STS, Zhang X-Q, Zhuang JT-F, Chan H-L, Li C-H, Leung GKK. MicroRNA-21 inhibition enhances in vitro chemosensitivity of temozolomide-resistant glioblastoma cells. Anticancer Res. 2012;32(7):2835–41.

    PubMed  CAS  Google Scholar 

  50. Li Y, Li W, Yang Y, Lu Y, He C, Hu G, et al. MicroRNA-21 targets LRRFIP1 and contributes to VM-26 resistance in glioblastoma multiforme. Brain Res. 2009;1286:13–28. doi:10.1016/j.brainres.2009.06.053.

    Article  PubMed  CAS  Google Scholar 

  51. Chen L, Zhang J, Han L, Zhang A, Zhang C, Zheng Y, et al. Downregulation of miR-221/222 sensitizes glioma cells to temozolomide by regulating apoptosis independently of p53 status. Oncol Rep. 2012;27(3):854–60. doi:10.3892/or.2011.1535.

    PubMed  CAS  Google Scholar 

  52. Ujifuku K, Mitsutake N, Takakura S, Matsuse M, Saenko V, Suzuki K, et al. miR-195, miR-455-3p and miR-10a(*) are implicated in acquired temozolomide resistance in glioblastoma multiforme cells. Cancer Lett. 2010;296(2):241–8. doi:10.1016/j.canlet.2010.04.013.

    Article  PubMed  CAS  Google Scholar 

  53. Zhang Q-Q, Xu H, Huang M-B, Ma L-M, Huang Q-J, Yao Q, et al. MicroRNA-195 plays a tumor-suppressor role in human glioblastoma cells by targeting signaling pathways involved in cellular proliferation and invasion. Neuro Oncol. 2012;14(3):278–87. doi:10.1093/neuonc/nor216.

    Article  PubMed  CAS  Google Scholar 

  54. Li W-Q, Li Y-M, Tao B-B, Lu Y-C, Hu G-H, Liu H-M, et al. Downregulation of ABCG2 expression in glioblastoma cancer stem cells with miRNA-328 may decrease their chemoresistance. Med Sci Monit. 2010;16(10):HY27–30.

    PubMed  Google Scholar 

  55. Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G, et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res. 2008;68(22):9125–30. doi:10.1158/0008-5472.can-08-2629.

    Article  PubMed  CAS  Google Scholar 

  56. Chen R, Nishimura MC, Bumbaca SM, Kharbanda S, Forrest WF, Kasman IM, et al. A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell. 2010;17(4):362–75. doi:10.1016/j.ccr.2009.12.049.

    Article  PubMed  CAS  Google Scholar 

  57. Ulasov IV, Nandi S, Dey M, Sonabend AM, Lesniak MS. Inhibition of Sonic hedgehog and Notch pathways enhances sensitivity of CD133(+) glioma stem cells to temozolomide therapy. Mol Med. 2011;17(1–2):103–12. doi:10.2119/molmed.2010.00062.

    PubMed  CAS  Google Scholar 

  58. Jeon H-M, Sohn Y-W, Oh S-Y, Oh S-Y, Kim S-H, Beck S, et al. ID4 imparts chemoresistance and cancer stemness to glioma cells by derepressing miR-9*-mediated suppression of SOX2. Cancer Res. 2011;71(9):3410–21. doi:10.1158/0008-5472.can-10-3340.

    Article  PubMed  CAS  Google Scholar 

  59. Yang Y-P, Chien Y, Chiou G-Y, Cherng J-Y, Wang M-L, Lo W-L, et al. Inhibition of cancer stem cell-like properties and reduced chemoradioresistance of glioblastoma using microRNA145 with cationic polyurethane-short branch PEI. Biomaterials. 2012;33(5):1462–76. doi:10.1016/j.biomaterials.2011.10.071.

    Article  PubMed  CAS  Google Scholar 

  60. Yu X, Zhang W, Ning Q, Luo X. MicroRNA-34a inhibits human brain glioma cell growth by down-regulation of Notch1. J Huazhong Univ Sci Technol Med Sci. 2012;32(3):370–4. doi:10.1007/s11596-012-0064-0.

    Article  PubMed  CAS  Google Scholar 

  61. Li W-B, Ma M-W, Dong L-J, Wang F, Chen L-X, Li X-R. MicroRNA-34a targets notch1 and inhibits cell proliferation in glioblastoma multiforme. Cancer Biol Ther. 2011;12(6):477–83. doi:10.4161/cbt.12.6.16300.

    Article  PubMed  CAS  Google Scholar 

  62. Guessous F, Zhang Y, Kofman A, Catania A, Li Y, Schiff D, et al. microRNA-34a is tumor suppressive in brain tumors and glioma stem cells. Cell Cycle. 2010;9(6):1031–6.

    Article  PubMed  CAS  Google Scholar 

  63. Li Y, Guessous F, Zhang Y, Dipierro C, Kefas B, Johnson E, et al. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res. 2009;69(19):7569–76. doi:10.1158/0008-5472.can-09-0529.

    Article  PubMed  CAS  Google Scholar 

  64. Kefas B, Comeau L, Floyd DH, Seleverstov O, Godlewski J, Schmittgen T, et al. The neuronal microRNA miR-326 acts in a feedback loop with notch and has therapeutic potential against brain tumors. J Neurosci. 2009;29(48):15161–8. doi:10.1523/jneurosci.4966-09.2009.

    Article  PubMed  CAS  Google Scholar 

  65. Mei J, Bachoo R, Zhang C-L. MicroRNA-146a inhibits glioma development by targeting Notch1. Mol Cell Biol. 2011;31(17):3584–92. doi:10.1128/mcb.05821-11.

    Article  PubMed  CAS  Google Scholar 

  66. Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med. 2008;6(14).

  67. Shi L, Zhang J, Pan T, Zhou J, Gong W, Liu N, et al. MiR-125b is critical for the suppression of human U251 glioma stem cell proliferation. Brain Res. 2010;1312:120–6. doi:10.1016/j.brainres.2009.11.056.

    Article  PubMed  CAS  Google Scholar 

  68. Srinivasan S, Patric IRP, Somasundaram K. A ten-microRNA expression signature predicts survival in glioblastoma. PLoS ONE. 2011;6(3).

  69. Lakomy R, Sana J, Hankeova S, Fadrus P, Kren L, Lzicarova E, et al. MiR-195, miR-196b, miR-181c, miR-21 expression levels and O-6-methylguanine-DNA methyltransferase methylation status are associated with clinical outcome in glioblastoma patients. Cancer Sci. 2011;102(12):2186–90. doi:10.1111/j.1349-7006.2011.02092.x.

    Article  PubMed  CAS  Google Scholar 

  70. Poltronieri P, D’Urso PI, Mezzolla V, D’Urso OF. Potential of anti-cancer therapy based on anti-miR-155 oligonucleotides in glioma and brain tumours. Chem Biol Drug Des. 2013;81(1):79–84. doi:10.1111/cbdd.12002.

    Article  PubMed  CAS  Google Scholar 

  71. Shan SW, Fang L, Shatseva T, Rutnam ZJ, Yang X, Lu WY, et al. Mature MiR-17-5p and passenger miR-17-3p induce hepatocellular carcinoma by targeting PTEN, GalNT7, and vimentin in different signal pathways. J Cell Sci. 2013. doi:10.1242/jcs.122895.

    Google Scholar 

  72. Gu Y, Sun J, Groome LJ, Wang Y. Differential miRNA expression profiles between the first and third trimester human placentas. Am J Physiol Endocrinol Metab. 2013. doi:10.1152/ajpendo.00660.2012.

  73. Xu XM, Wang XB, Chen MM, Liu T, Li YX, Jia WH, et al. MicroRNA-19a and -19b regulate cervical carcinoma cell proliferation and invasion by targeting CUL5. Cancer Lett. 2012;322(2):148–58. doi:10.1016/j.canlet.2012.02.038.

    Article  PubMed  CAS  Google Scholar 

  74. Liu M, Wang Z, Yang S, Zhang W, He S, Hu C, et al. TNF-alpha is a novel target of miR-19a. Int J Oncol. 2011;38(4):1013–22. doi:10.3892/ijo.2011.924.

    PubMed  CAS  Google Scholar 

  75. Liang Z, Li Y, Huang K, Wagar N, Shim H. Regulation of miR-19 to breast cancer chemoresistance through targeting PTEN. Pharm Res. 2011;28(12):3091–100. doi:10.1007/s11095-011-0570-y.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by grants of Internal Grant Agency of the Czech Ministry of Health no. NT13514-4/2012 and NT11214-4/2010; project “CEITEC—Central European Institute of Technology” (CZ.1.05/1.1.00/02.0068); and by the Institutional Resources for Supporting the Research Organization provided by the Czech Ministry of Health in 2012. The authors would like to thank Martin Kolnik for proofreading the article.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Slaby.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Besse, A., Sana, J., Fadrus, P. et al. MicroRNAs involved in chemo- and radioresistance of high-grade gliomas. Tumor Biol. 34, 1969–1978 (2013). https://doi.org/10.1007/s13277-013-0772-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-0772-5

Keywords

Navigation