Skip to main content

Advertisement

Log in

Exploring the role of miRNAs in renal cell carcinoma progression and metastasis through bioinformatic and experimental analyses

  • Research Article
  • Published:
Tumor Biology

Abstract

Metastasis results in most of the cancer deaths in clear cell renal cell carcinoma (ccRCC). MicroRNAs (miRNAs) regulate many important cell functions and play important roles in tumor development, metastasis and progression. In our previous study, we identified a miRNA signature for metastatic RCC. In this study, we validated the top differentially expressed miRNAs on matched primary and metastatic ccRCC pairs by quantitative polymerase chain reaction. We performed bioinformatics analyses including target prediction and combinatorial analysis of previously reported miRNAs involved in tumour progression and metastasis. We also examined the co-expression of the miRNAs clusters and compared expression of intronic miRNAs and their host genes. We observed significant dysregulation between primary and metastatic tumours from the same patient. This indicates that, at least in part, the metastatic signature develops gradually during tumour progression. We identified metastasis-dysregulated miRNAs that can target a number of genes previously found to be involved in metastasis of kidney cancer as well as other malignancies. In addition, we found a negative correlation of expression of miR-126 and its target vascular endothelial growth factor (VEGF)-A. Cluster analysis showed that members of the same miRNA cluster follow the same expression pattern, suggesting the presence of a locus control regulation. We also observed a positive correlation of expression between intronic miRNAs and their host genes, thus revealing another potential control mechanism for miRNAs. Many of the significantly dysregulated miRNAs in metastatic ccRCC are highly conserved among species. Our analysis suggests that miRNAs are involved in ccRCC metastasis and may represent potential biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ccRCC:

Clear cell renal cell carcinoma

EMT:

Epithelial to mesenchymal

miRNA:

microRNA

qRT-PCR:

Quantitative reverse transcription polymerase chain reaction

RCC:

Renal cell carcinoma

VEGF:

Vascular endothelial growth factor

RPLPO:

Acidic ribosomal phosphoprotein

EGFL7:

Epidermal growth factor like 7

FAK:

Focal adhesion kinase

IGF1:

Targeting insulin-like growth factor 1

MMP2:

Matrix metalopeptidase 2

HIF1A:

Hypoxia inducible factor 1 alpha subunit

PDGFB:

Platelet-derived growth factor B

PDGFC:

Platelet-derived growth factor C

MDM2:

Murine double minute 2

TYMS:

Thymidylate synthase

VHL:

Von Hippel Lindau

References

  1. Chow WH, Dong LM, Devesa SS. Epidemiology and risk factors for kidney cancer. Nat Rev Urol. 2010;7:245–57.

    Article  PubMed  Google Scholar 

  2. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.

    Article  PubMed  Google Scholar 

  3. Remzi M, Javadli E, Ozsoy M. Management of small renal masses: a review. World J Urol. 2010;28:275–81.

    Article  PubMed  Google Scholar 

  4. Weiss RH, Lin PY. Kidney cancer: identification of novel targets for therapy. Kidney Int. 2006;69:224–32.

    Article  PubMed  CAS  Google Scholar 

  5. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331:1559–64.

    Article  PubMed  CAS  Google Scholar 

  6. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  PubMed  CAS  Google Scholar 

  7. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  PubMed  CAS  Google Scholar 

  8. Coghlin C, Murray GI. Current and emerging concepts in tumour metastasis. J Pathol. 2010;222:1–15.

    Article  PubMed  CAS  Google Scholar 

  9. Klein CA. Parallel progression of primary tumours and metastases. Nat Rev Cancer. 2009;9:302–12.

    Article  PubMed  CAS  Google Scholar 

  10. Hunter KW, Crawford NP, Alsarraj J. Mechanisms of metastasis. Breast Cancer Res. 2008;10 Suppl 1:S2.

    Article  PubMed  Google Scholar 

  11. Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L, et al. Tumor self-seeding by circulating cancer cells. Cell. 2009;139:1315–26.

    Article  PubMed  Google Scholar 

  12. White NM, Fatoohi E, Metias M, Jung K, Stephan C, Yousef GM. Metastamirs: a stepping stone towards improved cancer management. Nat Rev Clin Oncol. 2011;8:75–84.

    Article  PubMed  CAS  Google Scholar 

  13. Santarpia L, Nicoloso M, Calin GA. MicroRNAs: a complex regulatory network drives the acquisition of malignant cell phenotype. Endocr Relat Cancer. 2010;17:F51–75.

    Article  PubMed  CAS  Google Scholar 

  14. Sotiropoulou G, Pampalakis G, Lianidou E, Mourelatos Z. Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell. RNA. 2009;15:1443–61.

    Article  PubMed  CAS  Google Scholar 

  15. Chow TF, Youssef YM, Lianidou E, Romaschin AD, Honey RJ, Stewart R, et al. Differential expression profiling of microRNAs and their potential involvement in renal cell carcinoma pathogenesis. Clin Biochem. 2010;43:150–8.

    Article  PubMed  CAS  Google Scholar 

  16. Jung M, Mollenkopf HJ, Grimm C, Wagner I, Albrecht M, Waller T, et al. MicroRNA profiling of clear cell renal cell cancer identifies a robust signature to define renal malignancy. J Cell Mol Med. 2009;13:3918–28.

    Article  PubMed  Google Scholar 

  17. Weng L, Wu X, Gao H, Mu B, Li X, Wang JH, et al. MicroRNA profiling of clear cell renal cell carcinoma by whole-genome small RNA deep sequencing of paired frozen and formalin-fixed, paraffin-embedded tissue specimens. J Pathol. 2010;222:41–51.

    PubMed  CAS  Google Scholar 

  18. White NM, Bao TT, Grigull J, Youssef YM, Girgis A, Diamandis M, et al. miRNA profiling for clear cell renal cell carcinoma: biomarker discovery and identification of potential controls and consequences of miRNA dysregulation. J Urol. 2011;186(3):1077–83.

    Article  PubMed  CAS  Google Scholar 

  19. Youssef YM, White NM, Grigull J, Krizova A, Samy C, Mejia-Guerrero S, et al. Accurate molecular classification of kidney cancer subtypes using microRNA signature. Eur Urol. 2011;59:721–30.

    Article  PubMed  CAS  Google Scholar 

  20. Chow TF, Mankaruos M, Scorilas A, Youssef Y, Girgis A, Mossad S, et al. The miR-17-92 cluster is over expressed in and has an oncogenic effect on renal cell carcinoma. J Urol. 2010;183:743–51.

    Article  PubMed  CAS  Google Scholar 

  21. Fendler A, Stephan C, Yousef GM, Jung K. MicroRNAs as regulators of signal transduction in urological tumors. Clin Chem. 2011;57:954–68.

    Article  PubMed  CAS  Google Scholar 

  22. Neal CS, Michael MZ, Rawlings LH, Van der Hoek MB, Gleadle JM. The VHL-dependent regulation of microRNAs in renal cancer. BMC Med. 2010;8:64.

    Article  PubMed  Google Scholar 

  23. White NM, Bui A, Mejia-Guerrero S, Chao J, Soosaipillai A, Youssef Y, et al. Dysregulation of kallikrein-related peptidases in renal cell carcinoma: potential targets of miRNAs. Biol Chem. 2010;391:411–23.

    Article  PubMed  CAS  Google Scholar 

  24. Redova M, Svoboda M, Slaby O. MicroRNAs and their target gene networks in renal cell carcinoma. Biochem Biophys Res Commun. 2011;405:153–6.

    Article  PubMed  CAS  Google Scholar 

  25. White NM, Yousef GM. MicroRNAs: exploring a new dimension in the pathogenesis of kidney cancer. BMC Med. 2010;8:65.

    Article  PubMed  Google Scholar 

  26. Heinzelmann J, Henning B, Sanjmyatav J, Posorski N, Steiner T, Wunderlich H, et al. Specific miRNA signatures are associated with metastasis and poor prognosis in clear cell renal cell carcinoma. World J Urol. 2011;29:367–73.

    Article  PubMed  CAS  Google Scholar 

  27. White NMA, Khella HWZ, Grigull J, Adzovic S, Youssef YM, Honey RJ, Stewart R, Pace KT, Bjarnason GA, Jewett MAS, Evans AJ, Gabril M, Yousef GM. miRNA profiling in metastatic renal cell carcinoma reveals a tumour suppressor effect for miR-215. Br J Cancer. 2011, in press.

  28. Sethupathy P, Megraw M, Hatzigeorgiou AG. A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods. 2006;3:881–6.

    Article  PubMed  CAS  Google Scholar 

  29. Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA. 2005;11:241–7.

    Article  PubMed  CAS  Google Scholar 

  30. Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, Dunning MJ, et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 2007;8:R214.

    Article  PubMed  Google Scholar 

  31. Harbour JW, Onken MD, Roberson ED, Duan S, Cao L, Worley LA, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 2010;330:1410–3.

    Article  PubMed  CAS  Google Scholar 

  32. Paris PL, Sridharan S, Hittelman AB, Kobayashi Y, Perner S, Huang G, et al. An oncogenic role for the multiple endocrine neoplasia type 1 gene in prostate cancer. Prostate Cancer Prostatic Dis. 2009;12:184–91.

    Article  PubMed  CAS  Google Scholar 

  33. Bueno MJ, Malumbres M. MicroRNAs and the cell cycle. Biochim Biophys Acta. 2011;1812:592–601.

    PubMed  CAS  Google Scholar 

  34. Liu B, Peng XC, Zheng XL, Wang J, Qin YW. MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer. 2009;66:169–75.

    Article  PubMed  Google Scholar 

  35. Zhu N, Zhang D, Xie H, Zhou Z, Chen H, Hu T, et al. Endothelial-specific intron-derived miR-126 is down-regulated in human breast cancer and targets both VEGFA and PIK3R2. Mol Cell Biochem. 2011;351:157–64.

    Article  PubMed  CAS  Google Scholar 

  36. Chuang MJ, Sun KH, Tang SJ, Deng MW, Wu YH, Sung JS, et al. Tumor-derived tumor necrosis factor-alpha promotes progression and epithelial-mesenchymal transition in renal cell carcinoma cells. Cancer Sci. 2008;99:905–13.

    Article  PubMed  CAS  Google Scholar 

  37. Polanski R, Warburton HE, Ray-Sinha A, Devling T, Pakula H, Rubbi CP, et al. MDM2 promotes cell motility and invasiveness through a RING-finger independent mechanism. FEBS Lett. 2010;584:4695–702.

    Article  PubMed  CAS  Google Scholar 

  38. Mizutani Y, Wada H, Yoshida O, Fukushima M, Nakao M, Miki T. Significance of thymidine kinase activity in renal cell carcinoma. J Urol. 2003;169:706–9.

    Article  PubMed  CAS  Google Scholar 

  39. Chhabra R, Dubey R, Saini N. Cooperative and individualistic functions of the microRNAs in the miR-23a 27a 24–2 cluster and its implication in human diseases. Mol Cancer. 2010;9:232.

    Article  PubMed  Google Scholar 

  40. Pichiorri F, Suh SS, Rocci A, De LL, Taccioli C, Santhanam R, et al. Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell. 2010;18:367–81.

    Article  PubMed  CAS  Google Scholar 

  41. Griffiths-Jones S. Annotating noncoding RNA genes. Annu Rev Genom Hum Genet. 2007;8:279–98.

    Article  CAS  Google Scholar 

  42. Girijadevi R, Sreedevi VC, Sreedharan JV, Pillai MR. IntmiR: a complete catalogue of intronic miRNAs of human and mouse. Bioinformation. 2011;5:458–9.

    PubMed  Google Scholar 

  43. Wuttig D, Baier B, Fuessel S, Meinhardt M, Herr A, Hoefling C, et al. Gene signatures of pulmonary metastases of renal cell carcinoma reflect the disease-free interval and the number of metastases per patient. Int J Cancer. 2009;125:474–82.

    Article  PubMed  CAS  Google Scholar 

  44. Finley DS, Pantuck AJ, Belldegrun AS. Tumor biology and prognostic factors in renal cell carcinoma. Oncologist. 2011;16 Suppl 2:4–13.

    Article  PubMed  Google Scholar 

  45. Noon AP, Vlatkovic N, Polanski R, Maguire M, Shawki H, Parsons K, et al. p53 and MDM2 in renal cell carcinoma: biomarkers for disease progression and future therapeutic targets? Cancer. 2010;116:780–90.

    Article  PubMed  CAS  Google Scholar 

  46. Shi YK, Yu YP, Tseng GC, Luo JH. Inhibition of prostate cancer growth and metastasis using small interference RNA specific for minichromosome complex maintenance component 7. Cancer Gene Ther. 2010;17:694–9.

    Article  PubMed  CAS  Google Scholar 

  47. Honeycutt KA, Chen Z, Koster MI, Miers M, Nuchtern J, Hicks J, et al. Deregulated minichromosomal maintenance protein MCM7 contributes to oncogene driven tumorigenesis. Oncogene. 2006;25:4027–32.

    Article  PubMed  CAS  Google Scholar 

  48. Ren B, Yu G, Tseng GC, Cieply K, Gavel T, Nelson J, et al. MCM7 amplification and overexpression are associated with prostate cancer progression. Oncogene. 2006;25:1090–8.

    Article  PubMed  CAS  Google Scholar 

  49. Yoshida K, Inoue I. Conditional expression of MCM7 increases tumor growth without altering DNA replication activity. FEBS Lett. 2003;553:213–7.

    Article  PubMed  CAS  Google Scholar 

  50. Yeung ML, Yasunaga J, Bennasser Y, Dusetti N, Harris D, Ahmad N, et al. Roles for microRNAs, miR-93 and miR-130b, and tumor protein 53-induced nuclear protein 1 tumor suppressor in cell growth dysregulation by human T-cell lymphotrophic virus 1. Cancer Res. 2008;68:8976–85.

    Article  PubMed  CAS  Google Scholar 

  51. Luedde T. MicroRNA-151 and its hosting gene FAK (focal adhesion kinase) regulate tumor cell migration and spreading of hepatocellular carcinoma. Hepatology. 2010;52:1164–6.

    Article  PubMed  Google Scholar 

  52. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE. Focal adhesion kinase gene silencing promotes anoikis and suppresses metastasis of human pancreatic adenocarcinoma cells. Surgery. 2004;135:555–62.

    Article  PubMed  CAS  Google Scholar 

  53. Miyazaki T, Kato H, Nakajima M, Sohda M, Fukai Y, Masuda N, et al. FAK overexpression is correlated with tumour invasiveness and lymph node metastasis in oesophageal squamous cell carcinoma. Br J Cancer. 2003;89:140–5.

    Article  PubMed  CAS  Google Scholar 

  54. Weiner TM, Liu ET, Craven RJ, Cance WG. Expression of focal adhesion kinase gene and invasive cancer. Lancet. 1993;342:1024–5.

    Article  PubMed  CAS  Google Scholar 

  55. Schimanski CC, Frerichs K, Rahman F, Berger M, Lang H, Galle PR, et al. High miR-196a levels promote the oncogenic phenotype of colorectal cancer cells. World J Gastroenterol. 2009;15:2089–96.

    Article  PubMed  CAS  Google Scholar 

  56. De Souza Setubal Destro MF, Bitu CC, Zecchin KG, Graner E, Lopes MA, Kowalski LP, et al. Overexpression of HOXB7 homeobox gene in oral cancer induces cellular proliferation and is associated with poor prognosis. Int J Oncol. 2010;36:141–9.

    PubMed  Google Scholar 

  57. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449:682–8.

    Article  PubMed  CAS  Google Scholar 

  58. Miyazaki YJ, Hamada J, Tada M, Furuuchi K, Takahashi Y, Kondo S, et al. HOXD3 enhances motility and invasiveness through the TGF-beta-dependent and -independent pathways in A549 cells. Oncogene. 2002;21:798–808.

    Article  PubMed  CAS  Google Scholar 

  59. Guo C, Sah JF, Beard L, Willson JK, Markowitz SD, Guda K. The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Gene Chromosome Cancer. 2008;47:939–46.

    Article  CAS  Google Scholar 

  60. Saito Y, Friedman JM, Chihara Y, Egger G, Chuang JC, Liang G. Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem Biophys Res Commun. 2009;379:726–31.

    Article  PubMed  CAS  Google Scholar 

  61. Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP, Wei WI. Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin Cancer Res. 2008;14:2588–92.

    Article  PubMed  CAS  Google Scholar 

  62. Aikawa T, Whipple CA, Lopez ME, Gunn J, Young A, Lander AD, et al. Glypican-1 modulates the angiogenic and metastatic potential of human and mouse cancer cells. J Clin Invest. 2008;118:89–99.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Canadian Institute of Health Research (CIHR grant # 86490), Canadian Cancer Society (CCS grant # 20185), the Ministry of Research and Innovation, Government of Ontario, the Kidney Foundation of Canada and Cancer Research Society.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George M. Yousef.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplementary Table 1

The 40 top dysregulated miRNAs in metastatic ccRCC compared to primary tumours (DOC 58 kb)

Supplementary Table 2

Genes involved in Metastasis of different types of cancers are predicted targets of metastatic ccRCC miRNAs (DOC 175 kb)

Supplementary Table 3

Clusters of miRNA dysregulated in Metastasis (DOC 174 kb)

Supplementary Table 4

Intronic miRNAs and their host genes differentially expressed in ccRCC metastasis (DOC 116 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khella, H.W.Z., White, N.M.A., Faragalla, H. et al. Exploring the role of miRNAs in renal cell carcinoma progression and metastasis through bioinformatic and experimental analyses. Tumor Biol. 33, 131–140 (2012). https://doi.org/10.1007/s13277-011-0255-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-011-0255-5

Keywords

Navigation