Skip to main content

Advertisement

Log in

Methylene Blue for Distributive Shock: A Potential New Use of an Old Antidote

  • Review Article
  • Published:
Journal of Medical Toxicology Aims and scope Submit manuscript

Abstract

Methylene blue is used primarily in the treatment of patients with methemoglobinemia. Most recently, methylene blue has been used as a treatment for refractory distributive shock from a variety of causes such as sepsis and anaphylaxis. Many studies suggest that the nitric oxide–cyclic guanosine monophosphate (NO–cGMP) pathway plays a significant role in the pathophysiology of distributive shock. There are some experimental and clinical experiences with the use of methylene blue as a selective inhibitor of the NO–cGMP pathway. Methylene blue may play a role in the treatment of distributive shock when standard treatment fails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Spaeth CS, Robison T, Fan JD et al. (2012) Cellular mechanisms of plasmalemmal sealing and axonal repair by polyethylene glycol and methylene blue. J Neurosci Res 90(5):955–66 doi:10.1002/jnr.23022

    Google Scholar 

  2. Sohrabnezhad SH (2011) Study of catalytic reduction and photodegradation of methylene blue by heterogeneous catalyst. Spectrochim Acta A Mol Biomol Spectrosc 81(1):228–235

    Article  PubMed  CAS  Google Scholar 

  3. Kasozi DM, Gromer S, Adler H et al (2011) The bacterial redox signaller pyocyanin as an antiplasmodial agent: comparisons with its thioanalog methylene blue. Redox Rep 16(4):154–165

    Article  PubMed  CAS  Google Scholar 

  4. Meissner PE, Mandi G, Coulibaly B et al (2006) Methylene blue for malaria in Africa: results from a dose-finding study in combination with chloroquine. Malar J 8:5–84

    Google Scholar 

  5. Adjalley SH, Johnston GL, Li T, Eastman RT et al (2011) Quantitative assessment of Plasmodium falciparum sexual development reveals potent transmission-blocking activity by methylene blue. Proc Natl Acad Sci U S A 108(47):E1214–E1223

    Article  PubMed  Google Scholar 

  6. Hanzlik PJ (1933) Subject of this letter: Methylene blue as antidote for cyanide poisoning. Cal West Med 38(3):225–226

    PubMed  CAS  Google Scholar 

  7. Giovanis P, Garna A, Marcante M et al (2009) Ifosfamide encephalopathy and use of methylene blue. A case report of different sequential neurotoxicity. Tumori 95(4):545–546

    PubMed  Google Scholar 

  8. Richards A, Marshall H, McQuary A (2011) Evaluation of methylene blue, thiamine, and/or albumin in the prevention of ifosfamide-related neurotoxicity. J Oncol Pharm Pract 17(4):372–380

    Article  PubMed  CAS  Google Scholar 

  9. Barclay JA, Ziemba SE, Ibrahim RB (2011) Dapsone-induced methemoglobinemia: a primer for clinicians. Ann Pharmacother 45(9):1103–1115

    Article  PubMed  CAS  Google Scholar 

  10. So TY, Farrington E (2008) Topical benzocaine-induced methemoglobinemia in the pediatric population. J Pediatr Health Care 22(6):335–339

    Article  PubMed  Google Scholar 

  11. Hahn IH, Hoffman RS, Nelson LS (2004) EMLA-induced methemoglobinemia and systemic topical anesthetic toxicity. J Emerg Med 26(1):85–88

    Article  PubMed  Google Scholar 

  12. Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    Article  PubMed  CAS  Google Scholar 

  13. Schuman EM, Madison DV (1991) A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science 254:1503–1506

    Article  PubMed  CAS  Google Scholar 

  14. Llyengar R, Stuehr DJ, Marietta MA (1987) Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: precursors and role of the respiratory burst. Proc Natl Acad 84:6369–6373

    Article  Google Scholar 

  15. Hibbs JB, Taintor RR, Vavrin Z (1987) Macrophage cytotoxicity: role of L-argininc deiminasc and imino nitrogen oxidation to nitrite. Science 235:473–476

    Article  PubMed  CAS  Google Scholar 

  16. Garcin ED, Bruns CM, Lloyd SJ et al (2004) Structural basis for isozyme-specific regulation of electron transfer in nitric-oxide synthase. J Biol Chem 279:37918–37927

    Article  PubMed  CAS  Google Scholar 

  17. Daff S (2012) NO synthase: structures and mechanisms. Nitric Oxide 23:1–11

    Article  Google Scholar 

  18. Stuehr D, Pou S, Rosen GM (2001) Oxygen reduction by nitric-oxide synthases. J Biol Chem 276:14533–14536

    Article  PubMed  CAS  Google Scholar 

  19. Tatsumi R, Wuollet AL, Tabata K et al (2009) A role for calcium-calmodulin in regulating nitric oxide production during skeletal muscle satellite cell activation. Am J Physiol Cell Physiol 296(4):C922–C929

    Article  PubMed  CAS  Google Scholar 

  20. Beckman JS, Beckman TW, Chen J et al (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 87(4):1620–1624

    Article  PubMed  CAS  Google Scholar 

  21. Beckman JS, Crow JP (1993) Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochem Soc Trans 21(2):330–334

    PubMed  CAS  Google Scholar 

  22. Ma L (1993) Evidence for nitric oxide-generator cells in the brain. Bull Tokyo Med Dent Univ 40(3):125–134

    PubMed  CAS  Google Scholar 

  23. Forstermann U, Closs EI, Pollock JS, Nakane et al (1994) Nitric oxide synthase isozymes: characterization, purification, molecular cloning, and functions. Hypertension 23:1121–1131

    Article  PubMed  CAS  Google Scholar 

  24. Salemme E, Diano S, Maharajan P, Maharajan V (1996) Nitric oxide, a neuronal messenger. Its role in the hippocampus neuronal plasticity. Riv Biol 89(1):87–107

    PubMed  CAS  Google Scholar 

  25. Izumi Y, Clifford DB, Zorumski CF (1992) Inhibition of long-term potentiation by NMDA-mediated nitric oxide release. Science 257:1273–1276

    Article  PubMed  CAS  Google Scholar 

  26. Handy RL, Wallace P, Moore PK (1996) Inhibition of nitric oxide synthase by isothioureas: cardiovascular and antinociceptive effects. Pharmacol Biochem Behav 55(2):179–184

    Article  PubMed  CAS  Google Scholar 

  27. Togashi H, Sakuma I, Yoshioka M et al (1992) A central nervous system action of nitric oxide in blood pressure regulation. J Pharmacol Exp Ther 262:343–347

    PubMed  CAS  Google Scholar 

  28. Lipton SA, Choi YB, Pan ZH et al (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitrosocompounds. Nature 364:626–632

    Article  PubMed  CAS  Google Scholar 

  29. Shaul PW (2002) Regulation of endothelial nitric oxide synthase: location, location, location. Annu Rev Physiol 64:749–774

    Article  PubMed  CAS  Google Scholar 

  30. Venema RC, Sayegh HS, Arnal JF et al (1995) Role of the enzyme calmodulin-binding domain in membrane association and phospholipid inhibition of endothelial nitric oxide synthase. J Biol Chem 270(24):14705–14711

    Article  PubMed  CAS  Google Scholar 

  31. Zeiher AM, Fisslthaler B, Schray-Utz B et al (1995) Nitric oxide modulates the expression of monocyte chemoattractant protein 1 in cultured human endothelial cells. Circ Res 76:980–986

    Article  PubMed  CAS  Google Scholar 

  32. Alheid U, Frolich JC, Forstermann U (1987) Endothelium-derived relaxing factor from cultured human endothelial cells inhibits aggregation of human platelets. Thromb Res 47:561–571

    Article  PubMed  CAS  Google Scholar 

  33. Kurihara N, Alfie ME, Sigmon DH et al (1998) Role of nNOS in blood pressure regulation in eNOS null mutant mice. Hypertension 32(5):856–861

    Article  PubMed  CAS  Google Scholar 

  34. Triggle CR, Ding H (2010) A review of endothelial dysfunction in diabetes: a focus on the contribution of a dysfunctional eNOS. J Am Soc Hypertens 4(3):102–115

    Article  PubMed  CAS  Google Scholar 

  35. Nathan CF, Hibbs JB (1991) Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol 3:65–70

    Article  PubMed  CAS  Google Scholar 

  36. MacNaul KL, Hutchinson NI (1993) Differential expression of iNOS and cNOS mRNA in human vascular smooth muscle cells and endothelial cells under normal and inflammatory conditions. Biochem Biophys Res Commun 196(3):1330–1334

    Article  PubMed  CAS  Google Scholar 

  37. Tamir S, deRojas-Walker T, Gal A et al (1995) Nitric oxide production in relation to spontaneous B-cell lymphoma and myositis in SJL mice. Cancer Res 55(19):4391–4397

    PubMed  CAS  Google Scholar 

  38. Losada AP, Bermúdez R, Faílde LD et al (2012) Quantitative and qualitative evaluation of iNOS expression in turbot (Psetta maxima) infected with Enteromyxum scophthalmi. Fish Shellfish Immunol 32(2):243–248

    Article  PubMed  CAS  Google Scholar 

  39. Sade K, Schwartz IF, Etkin S et al (2007) Expression of inducible nitric oxide synthase in a mouse model of anaphylaxis. J Investig Allergol Clin Immunol 17(6):379–385

    PubMed  CAS  Google Scholar 

  40. Matuschek A, Ulbrich M, Timm S et al (2009) Analysis of parathyroid graft rejection suggests alloantigen-specific production of nitric oxide by iNOS-positive intragraft macrophages. Transpl Immunol 21(4):183–191

    Article  PubMed  CAS  Google Scholar 

  41. Okamoto I, Abe M, Shibata K et al (2000) Evaluating the role of inducible nitric oxide synthase using a novel and selective inducible nitric oxide synthase inhibitor in septic lung injury produced by cecal ligation and puncture. Am J Respir Crit Care Med 162(2 Pt 1):716–722

    Article  PubMed  CAS  Google Scholar 

  42. Lucas KA, Pitari GM, Kazerounian S et al (2000) Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 52:375–413

    PubMed  CAS  Google Scholar 

  43. Wedel B, Garbers D (2001) The guanylyl cyclase family at Y2K. Annu Rev Physiol 63:215–233

    Article  PubMed  CAS  Google Scholar 

  44. Mujoo K, Sharin VG, Martin E et al (2010) Role of soluble guanylyl cyclase-cyclic GMP signaling in tumor cell proliferation. Nitric Oxide 22(1):43–50

    Article  PubMed  CAS  Google Scholar 

  45. Schoeffter P, Lugnier C, Demesy-Waeldele F et al (1987) Role of cyclic AMP- and cyclic GMP-phosphodiesterases in the control of cyclic nucleotide levels and smooth muscle tone in rat isolated aorta. A study with selective inhibitors. Biochem Pharmacol 36(22):3965–3972

    Article  PubMed  CAS  Google Scholar 

  46. Bensinger RE, Podos SM (1975) Cyclic nucleotide metabolism in the retina. Invest Ophthalmol 14(4):263–266

    PubMed  CAS  Google Scholar 

  47. Kumar A, Brar R, Wang P et al (1999) Role of nitric oxide and cGMP in human septic serum-induced depression of cardiac myocyte contractility. Am J Physiol 276:R256–R276

    Google Scholar 

  48. Winbery SL, Lieberman PL (2002) Histamine and antihistamines in anaphylaxis. Clin Allergy Immunol 17:287–317

    PubMed  CAS  Google Scholar 

  49. Lieberman P (1990) The use of antihistamines in the prevention and treatment of anaphylaxis and anaphylactoid reactions. J Allergy Clin Immunol 86(4 Pt 2):684–686

    Article  PubMed  CAS  Google Scholar 

  50. Enjeti S, Bleecker ER, Smith PL et al (1983) Hemodynamic mechanisms in anaphylaxis. Circ Shock 11:297–309

    PubMed  CAS  Google Scholar 

  51. Toda N (1984) Endothelium-dependent relaxation induced by angiotensin II and histamine in isolated arteries of dog. Br J Pharmacol 81:301–307

    Article  PubMed  CAS  Google Scholar 

  52. Krstic MK, Stepanovic RM, Krstic SK et al (1989) Endothelium-dependent relaxation of the rat renal artery caused by activation of histamine H1-receptors. Pharmacology 38:113–120

    Article  PubMed  CAS  Google Scholar 

  53. Rosenkranz-Weiss P, Sessa WC, Milstien S et al (1994) Regulation of nitric oxide synthesis by proinflammatory cytokines in human umbilical vein endothelial cells: elevations in tetrahydrobiopterin levels enhance endothelial nitric oxide synthase specific activity. J Clin Invest 93:2236–2243

    Article  PubMed  CAS  Google Scholar 

  54. Li H, Burkhardt C, Heinrich UR et al (2003) Histamine upregulates gene expression of endothelial nitric oxide synthase in human vascular endothelial cells. Circulation 107:2348–2354

    Article  PubMed  CAS  Google Scholar 

  55. Champion HC, Kadowitz PJ (1997) NO release and the opening of K + ATP channels mediate vasodilator responses to histamine in the cat. Am J Physiol 273(2 pt 2):H928–H937

    PubMed  CAS  Google Scholar 

  56. Buzato MA, Viaro F, Piccinato CE et al (2005) The use of methylene blue in the treatment of anaphylactic shock induced by compound 48/80: experimental studies in rabbits. Shock 23(6):582–587

    PubMed  CAS  Google Scholar 

  57. Oliveira Neto AM, Duarte NM, Vicente WV et al (2003) Methylene blue: an effective treatment for contrast medium-induced anaphylaxis. Med Sci Monit 9(11):CS102–CS106

    PubMed  Google Scholar 

  58. Del Duca D, Sheth SS, Clarke AE et al (2009) Use of methylene blue for catecholamine-refractory vasoplegia from protamine and aprotinin. Ann Thorac Surg 87(2):640–642

    Article  PubMed  Google Scholar 

  59. Levy MM, Fink MP, Marshall JC et al (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 31:1250–1256

    Article  PubMed  Google Scholar 

  60. Angus DC, Linde-Zwirble WT, Lidicker J et al (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310

    Article  PubMed  CAS  Google Scholar 

  61. Dellinger RP (2003) Inflammation and coagulation: implications for the septic patient. Clin Infect Dis 36:1259–1265

    Article  PubMed  Google Scholar 

  62. Kumar A, Brar R, Wang P et al (1999) Role of nitric oxide and cGMP in human septic serum-induced depression of cardiac myocyte contractility. Am J Physiol 276(1 Pt 2):R265–R276

    PubMed  CAS  Google Scholar 

  63. Symeonides S, Balk RA (1999) Nitric oxide in the pathogenesis of sepsis. Infect Dis Clin North Am 13(2):449–63 x

    Google Scholar 

  64. Fleming I, Julou-Schaeffer G, Gray GA et al (1991) Evidence that an L-arginine/nitric oxide dependent elevation of tissue cyclic GMP content is involved in depression of vascular reactivity by endotoxin. Br J Pharmacol 103(1):1047–1052

    Article  PubMed  CAS  Google Scholar 

  65. Schott CA, Gray GA, Stoclet JC (1993) Dependence of endotoxin-induced vascular hyporeactivity on extracellular L-arginine. Br J Pharmacol 108(1):38–43

    Article  PubMed  CAS  Google Scholar 

  66. Julou-Schaeffer G, Gray GA, Fleming I et al (1990) Loss of vascular responsiveness induced by endotoxin involves L-arginine pathway. Am J Physiol 259(4 Pt 2):H1038–H1043

    PubMed  CAS  Google Scholar 

  67. Schuller F, Fleming I, Stoclet JC et al (1992) Effect of endotoxin on circulating cyclic GMP in the rat. Eur J Pharmacol 212(1):93–96

    Article  PubMed  CAS  Google Scholar 

  68. Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  PubMed  CAS  Google Scholar 

  69. Watson D, Grover R, Anzueto A et al (2004) Cardiovascular effects of the nitric oxide synthase inhibitor NG-methyl-L-arginine hydrochloride (546C88) in patients with septic shock: results of a randomized, double-blind, placebo-controlled multicenter study (study no. 144–002). Crit Care Med 32(1):13–20

    Article  PubMed  CAS  Google Scholar 

  70. Cheng X, Pang CC (1998) Pressor and vasoconstrictor effects of methylene blue in endotoxaemic rats. Naunyn Schmiedebergs Arch Pharmacol 357(6):648–653

    Article  PubMed  CAS  Google Scholar 

  71. Fernandes D, Sordi R, Pacheco LK et al (2009) Late, but not early, inhibition of soluble guanylate cyclase decreases mortality in a rat sepsis model. J Pharmacol Exp Ther 328(3):991–999

    Article  PubMed  CAS  Google Scholar 

  72. Demirbilek S, Sizanli E, Karadag N et al (2006) The effects of methylene blue on lung injury in septic rats. Eur Surg Res 38(1):35–41

    Article  PubMed  CAS  Google Scholar 

  73. Menardi AC, Viaro F, Vicente WV et al (2006) Hemodynamic and vascular endothelium function studies in healthy pigs after intravenous bolus infusion of methylene blue. Arq Bras Cardiol 87(4):525–532

    Article  PubMed  CAS  Google Scholar 

  74. Evgenov OV, Sveinbjørnsson B, Bjertnaes LJ (2001) Continuously infused methylene blue modulates the early cardiopulmonary response to endotoxin in awake sheep. Acta Anaesthesiol Scand 45(10):1246–1254

    Article  PubMed  CAS  Google Scholar 

  75. Evgenov OV, Sager G, Bjertnaes LJ (2001) Methylene blue reduces lung fluid filtration during the early phase of endotoxemia in awake sheep. Crit Care Med 29(2):374–379

    Article  PubMed  CAS  Google Scholar 

  76. Galili Y, Kluger Y, Mianski Z et al (1997) Methylene blue—a promising treatment modality in sepsis induced by bowel perforation. Eur Surg Res 29(5):390–395

    Article  PubMed  CAS  Google Scholar 

  77. Dumbarton TC, Minor S, Yeung CK et al (2011) Prolonged methylene blue infusion in refractory septic shock: a case report. Can J Anaesth 58(4):401–405

    Article  PubMed  Google Scholar 

  78. van Haren FM, Pickkers P, Foudraine N et al. (2010) The effects of methylene blue infusion on gastric tonometry and intestinal fatty acid binding protein levels in septic shock patients. J Crit Care 25(2):358.e1-7

    Google Scholar 

  79. Brown G, Frankl D, Phang T (1996) Continuous infusion of methylene blue for septic shock. Postgrad Med J 72(852):612–614

    Article  PubMed  CAS  Google Scholar 

  80. Heemskerk S, van Haren FM, Foudraine NA et al (2008) Short-term beneficial effects of methylene blue on kidney damage in septic shock patients. Intensive Care Med 34(2):350–354

    Article  PubMed  CAS  Google Scholar 

  81. Park BK, Shim TS, Lim CM et al (2005) The effects of methylene blue on hemodynamic parameters and cytokine levels in refractory septic shock. Korean J Intern Med 20(2):123–128

    Article  PubMed  CAS  Google Scholar 

  82. Donati A, Conti G, Loggi S et al (2002) Does methylene blue administration to septic shock patients affect vascular permeability and blood volume? Crit Care Med 30(10):2271–2277

    Article  PubMed  CAS  Google Scholar 

  83. Kirov MY, Evgenov OV, Evgenov NV et al (2001) Infusion of methylene blue in human septic shock: a pilot, randomized, controlled study. Crit Care Med 29(10):1860–1867

    Article  PubMed  CAS  Google Scholar 

  84. Memis D, Karamanlioglu B, Yuksel M et al (2002) The influence of methylene blue infusion on cytokine levels during severe sepsis. Anaesth Intensive Care 30(6):755–762

    PubMed  CAS  Google Scholar 

  85. Juffermans NP, Vervloet MG, Daemen-Gubbels CR et al (2010) A dose-finding study of methylene blue to inhibit nitric oxide actions in the hemodynamics of human septic shock. Nitric Oxide 22(4):275–280

    Article  PubMed  CAS  Google Scholar 

  86. Weingartner R, Oliveira E, Oliveira ES et al (1999) Blockade of the action of nitric oxide in human septic shock increases systemic vascular resistance and has detrimental effects on pulmonary function after a short infusion of methylene blue. Braz J Med Biol Res 32(12):1505–1513

    Article  PubMed  CAS  Google Scholar 

  87. Gachot B, Bedos JP, Veber B et al (1995) Short-term effects of methylene blue on hemodynamics and gas exchange in humans with septic shock. Intensive Care Med 21(12):1027–1031

    Article  PubMed  CAS  Google Scholar 

  88. Goluboff N, Wheaton R (1961) Methylene blue-induced cyanosis and acute hemolytic anemia complicating the treatment of methemoglobinemia. J Pediatr 58:86–89

    Article  PubMed  CAS  Google Scholar 

  89. Héritier Barras AC, Walder B, Seeck M (2010) Serotonin syndrome following methylene blue infusion: a rare complication of antidepressant therapy. J Neurol Neurosurg Psychiatry 81(12):1412–1413

    Article  PubMed  Google Scholar 

  90. McDonnell AM, Rybak I, Wadleigh M et al. (2012) Suspected serotonin syndrome in a patient being treated with methylene blue for ifosfamide encephalopathy. J Oncol Pharm Pract 18(4):436–9

    Google Scholar 

  91. Boyer EW, Shannon M (2005) The serotonin syndrome. N Engl J Med 352(11):1112–1120

    Article  PubMed  CAS  Google Scholar 

  92. Petzer A, Harvey BH, Wegener G et al (2012) Azure B, a metabolite of methylene blue, is a high-potency, reversible inhibitor of monoamine oxidase. Toxicol Appl Pharmacol 258(3):403–409

    Article  PubMed  CAS  Google Scholar 

  93. Jang DH, Nelson LS, Hoffman RS (2011) Methylene blue in the treatment of refractory shock from an amlodipine overdose. Ann Emerg Med 58(6):565–567

    Article  PubMed  Google Scholar 

  94. Zhang X, Hintze TH (1998) Amlodipine releases nitric oxide from canine coronary microvessels, an unexpected mechanism of action of a calcium channel-blocking agent. Circulation 97:576–580

    Article  PubMed  CAS  Google Scholar 

  95. Zhang X, Loke KE, Mital S et al (2002) Paradoxical release of nitric oxide by an L-type calcium channel antagonist, the R+ enantiomer of amlodipine. J Cardiovasc Pharmacol 39:208–214

    Article  PubMed  CAS  Google Scholar 

  96. Lensai H et al (2003) Amlodipine activates the endothelial nitric oxide synthase by altering phosphorylation on Ser and Thr. Cardiovasc Res 59:844–853

    Article  Google Scholar 

  97. Xu B, Xiao-hung L, Lin G et al (2002) Amlodipine, but not verapamil or nifedipine, dilates rabbit femoral artery largely through a nitric oxide- and kinin-dependent mechanism. Br J Pharmacol 136:375–382

    Article  PubMed  CAS  Google Scholar 

  98. Rodrigues JM, Pazin Filho A, Rodrigues AJ et al (2007) Methylene blue for clinical anaphylaxis treatment: a case report. Sao Paulo Med J 125:60–62

    Article  PubMed  Google Scholar 

  99. Weissgerber AJ (2008) Methylene blue for refractory hypotension: a case report. AANA J 76(4):271–274

    PubMed  Google Scholar 

  100. Grayling M, Deakin CD (2003) Methylene blue during cardiopulmonary bypass to treat refractory hypotension in septic endocarditis. J Thorac Cardiovasc Surg 125(2):426–427

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grant 5UL1RR029893 from the National Center for Research Resources, National Institutes of Health.

Conflict of Interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Jang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, D.H., Nelson, L.S. & Hoffman, R.S. Methylene Blue for Distributive Shock: A Potential New Use of an Old Antidote. J. Med. Toxicol. 9, 242–249 (2013). https://doi.org/10.1007/s13181-013-0298-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13181-013-0298-7

Keywords

Navigation