Skip to main content

Advertisement

Log in

Stem cells tropism for malignant gliomas

干细胞向恶性胶质瘤的趋向性迁移

  • Minireview
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Various studies have demonstrated the tremendous tropism of stem cells for malignant gliomas, making these cells a potential vehicle for delivery of therapeutic genes to disseminated glioma cells. However, little is known about the mechanisms underlying the glioma-induced tropism of stem cells. Soluble factors including chemokines or growth factors released and expressed by glioma cells at least mediate the tropism of stem cells for gliomas. Here we review the possible mechanisms of stem cells tropism for malignant gliomas.

摘要

干细胞具有向恶性胶质瘤趋向性迁移的特性, 并可能成为恶性胶质瘤基因治疗的理想载体。 然而, 对干细胞向胶质瘤迁移的机制仍知之甚少。 胶质瘤细胞分泌的可溶性因子包括趋化因子或生长因子可以介导干细胞的胶质瘤趋向性。 本文就干细胞的胶质瘤趋向性机制进行综述。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Legler JM, Ries LA, Smith MA, Warren JL, Heineman EF, Kaplan RS, et al. Cancer surveillance series [corrected]: brain and other central nervous system cancers: recent trends in incidence and mortality. J Natl Cancer Inst 1999, 91: 1382–1390.

    Article  PubMed  CAS  Google Scholar 

  2. Surawicz TS, Davis F, Freels S, Laws ER Jr, Menck HR. Brain tumor survival: results from the National Cancer Data Base. J Neurooncol 1998, 40: 151–160.

    Article  PubMed  CAS  Google Scholar 

  3. Surawicz TS, McCarthy BJ, Kupelian V, Jukich PJ, Bruner JM, Davis FG. Descriptive epidemiology of primary brain and CNS tumors: results from the Central Brain Tumor Registry of the United States, 1999–1994. Neuro Oncol 1999, 1: 14–25.

    PubMed  CAS  Google Scholar 

  4. DeAngelis LM. Brain tumors. N Engl J Med 2001, 344: 114–123.

    Article  PubMed  CAS  Google Scholar 

  5. Grossman SA, Batara JF. Current management of glioblastoma multiforme. Semin Oncol 2004, 31: 635–644.

    Article  PubMed  CAS  Google Scholar 

  6. Keles GE, Berger MS. Advances in neurosurgical technique in the current management of brain tumors. Semin Oncol 2004, 31: 659–665.

    Article  PubMed  Google Scholar 

  7. Lefranc F, Brotchi J, Kiss R. Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J Clin Oncol 2005, 23: 2411–2422.

    Article  PubMed  CAS  Google Scholar 

  8. Dunn IF, Black PM. The neurosurgeon as local oncologist: cellular and molecular neurosurgery in malignant glioma therapy. Neurosurgery 2003, 52: 1411–1424.

    Article  PubMed  Google Scholar 

  9. Rich JN, Bigner DD. Development of novel targeted therapies in the treatment of malignant glioma. Nat Rev Drug Discov 2004, 3: 430–446.

    Article  PubMed  CAS  Google Scholar 

  10. Yasargil MG, Kadri PA, Yasargil DC. Microsurgery for malignant gliomas. J Neurooncol 2004, 69: 67–81.

    Article  PubMed  Google Scholar 

  11. Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A 2000, 97: 12846–12851.

    Article  PubMed  CAS  Google Scholar 

  12. Benedetti S, Pirola B, Pollo B, Magrassi L, Bruzzone MG, Rigamonti D, et al. Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med 2000, 6: 447–450.

    Article  PubMed  CAS  Google Scholar 

  13. Ehtesham M, Kabos P, Gutierrez MA, Chung NH, Griffith TS, Black KL, et al. Induction of glioblastoma apoptosis using neural stem cell-mediated delivery of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res 2002, 62: 7170–7174.

    PubMed  CAS  Google Scholar 

  14. Ehtesham M, Kabos P, Kabosova A, Neuman T, Black KL, Yu JS. The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Res 2002, 62: 5657–5663.

    PubMed  CAS  Google Scholar 

  15. Brown AB, Yang W, Schmidt NO, Carroll R, Leishear KK, Rainov NG, et al. Intravascular delivery of neural stem cell lines to target intracranial and extracranial tumors of neural and non-neural origin. Hum Gene Ther 2003, 14: 1777–1785.

    Article  PubMed  CAS  Google Scholar 

  16. Shah K, Tang Y, Breakefield X, Weissleder R. Real-time imaging of TRAIL-induced apoptosis of glioma tumors in vivo. Oncogene 2003, 22: 6865–6872.

    Article  PubMed  CAS  Google Scholar 

  17. Yang SY, Liu H, Zhang JN. Gene therapy of rat malignant gliomas using neural stem cells expressing IL-12. DNA Cell Biol 2004, 23: 381–389.

    Article  PubMed  CAS  Google Scholar 

  18. Kim SK, Cargioli TG, Machluf M, Yang W, Sun Y, Al-Hashem R, et al. PEX-producing human neural stem cells inhibit tumor growth in a mouse glioma model. Clin Cancer Res 2005, 11: 5965–5970.

    Article  PubMed  CAS  Google Scholar 

  19. Uhl M, Weiler M, Wick W, Jacobs AH, Weller M, Herrlinger U. Migratory neural stem cells for improved thymidine kinase-based gene therapy of malignant gliomas. Biochem Biophys Res Commun 2005, 328: 125–129.

    Article  PubMed  CAS  Google Scholar 

  20. Hamada H, Kobune M, Nakamura K, Kawano Y, Kato K, Honmou O, et al. Mesenchymal stem cells (MSC) as therapeutic cytoreagents for gene therapy. Cancer Sci 2005, 96: 149–156.

    Article  PubMed  CAS  Google Scholar 

  21. Phinney DG, Isakova I. Plasticity and therapeutic potential of mesenchymal stem cells in the nervous system. Curr Pharm Des 2005, 11: 1255–1265.

    Article  PubMed  CAS  Google Scholar 

  22. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002, 62: 3603–3608.

    PubMed  CAS  Google Scholar 

  23. Lee J, Elkahloun AG, Messina SA, Ferrari N, Xi D, Smith CL, et al. Cellular and genetic characterization of human adult bone marrow-derived neural stem-like cells: a potential antiglioma cellular vector. Cancer Res 2003, 63: 8877–8889.

    PubMed  CAS  Google Scholar 

  24. Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H, et al. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 2004, 11: 1155–1164.

    Article  PubMed  CAS  Google Scholar 

  25. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005, 65: 3307–3318.

    PubMed  CAS  Google Scholar 

  26. Tabatabai G, Bähr O, Möhle R, Eyüpoglu IY, Boehmler AM, Wischhusen J, et al. Lessons from the bone marrow: how malignant glioma cells attract adult haematopoietic progenitor cells. Brain 2005, 128: 2200–2211.

    Article  PubMed  Google Scholar 

  27. Glass R, Synowitz M, Kronenberg G, Walzlein JH, Markovic DS, Wang LP, et al. Glioblastoma-induced attraction of endogenous neural precursor cells is associated with improved survival. J Neurosci 2005, 25: 2637–2646.

    Article  PubMed  CAS  Google Scholar 

  28. Lendahl U. Gene regulation in the formation of the central nervous system. Acta Paediatr Suppl 1997, 422: 8–11.

    PubMed  CAS  Google Scholar 

  29. Kempermann G, Gast D, Kronenberg G, Yamaguchi M, Gage FH. Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development 2003, 130: 391–399.

    Article  PubMed  CAS  Google Scholar 

  30. Parkins CS, Darling JL, Gill SS, Revesz T, Thomas DG. Cell proliferation in serial biopsies through human malignant brain tumors: measurement using Ki67 antibody labelling. Br J Neurosurg 1991, 5: 289–298.

    Article  PubMed  CAS  Google Scholar 

  31. Okano H, Imai T, Okabe M. Musashi: a translational regulator of cell fate. J Cell Sci 2002, 115: 1355–1359.

    PubMed  CAS  Google Scholar 

  32. Shoshan Y, Nishiyama A, Chang A, Mörk S, Barnett GH, Cowell JK, et al. Expression of oligodendrocyte progenitor cell antigens by gliomas: implications for the histogenesis of brain tumors. Proc Natl Acad Sci USA 1996; 96: 10361–10366.

    Article  Google Scholar 

  33. Chazal G, Durbec P, Jankovski A, Rougon G, Cremer H. Consequences of neural cell adhesion molecule deficiency on cell migration in the rostral migratory stream of the mouse. J Neurosci 2000, 20: 1446–1457.

    PubMed  CAS  Google Scholar 

  34. Tanaka T, Serneo FF, Tseng HC, Kulkarni AB, Tsai LH, Gleeson JG, et al. Cdk5 phosphorylation of doublecortin ser297 regulates its effect on neuronal migration. Neuron 2004, 41: 215–227.

    Article  PubMed  CAS  Google Scholar 

  35. Holland EC. Gliomagenesis: genetic alterations and mouse models. Nat Rev Genet 2001, 2: 120–129.

    Article  PubMed  CAS  Google Scholar 

  36. Gage FH. Mammalian neural stem cells. Science 2000, 287: 1433–1438.

    Article  PubMed  CAS  Google Scholar 

  37. Huang DR, Wang J, Kivisakk P, Rollins BJ, Ransohoff RM. Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J Exp Med 2001, 193: 713–726.

    Article  PubMed  CAS  Google Scholar 

  38. Babcock AA, Kuziel WA, Rivest S, Owens T. Chemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS. J Neurosci 2003, 23: 7922–7930.

    PubMed  CAS  Google Scholar 

  39. Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA 2004, 101: 18117–18122.

    Article  PubMed  CAS  Google Scholar 

  40. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998, 393: 595–599.

    Article  PubMed  CAS  Google Scholar 

  41. Lu M, Grove EA, Miller RJ. Abnormal development of the hippocampal dentate gyrus in mice lacking the CXCR4 chemokine receptor. Proc Natl Acad Sci USA 2002, 99: 7090–7095.

    Article  PubMed  CAS  Google Scholar 

  42. Stumm RK, Zhou C, Ara T, Lazarini F, Dubois-Dalcq M, Nagasawa T, et al. CXCR4 regulates interneuron migration in the developing neocortex. J Neurosci 2003, 23: 5123–5130.

    PubMed  CAS  Google Scholar 

  43. Tran PB, Miller RJ. Chemokine receptors: signposts to brain development and disease. Nat Rev Neurosci 2003, 4: 444–455.

    Article  PubMed  CAS  Google Scholar 

  44. Belmadani A, Tran PB, Ren D, Assimacopoulos S, Grove EA, Miller RJ. The chemokine stromal cell-derived factor-1 regulates the migration of sensory neuron progenitors. J Neurosci 2005, 25: 3995–4003.

    Article  PubMed  CAS  Google Scholar 

  45. Rempel SA, Dudas S, Ge S, Gutiérrez JA. Identification and localization of the cytokine SDF1 and its receptor, CXC chemokine receptor 4, to regions of necrosis and angiogenesis in human glioblastoma. Clin Cancer Res 2000, 6: 102–111.

    PubMed  CAS  Google Scholar 

  46. Zhou Y, Larsen PH, Hao C, Yong VW. CXCR4 is a major chemokine receptor on glioma cells and mediates their survival. J Biol Chem 2002, 277: 49481–49487.

    Article  PubMed  CAS  Google Scholar 

  47. Barbero S, Bonavia R, Bajetto A, Porcile C, Pirani P, Ravetti JL, et al. Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Res 2003, 63: 1969–1974.

    PubMed  CAS  Google Scholar 

  48. Allport JR, Shindle Patil VR, Weissleder R. Murine neuronal progenitor cells are preferentially recruited to tumor vasculature via alpha4-integrin and SDF-1alpha-dependent mechanisms. Cancer Bio Ther 2004, 3: 838–844.

    Article  CAS  Google Scholar 

  49. Fears CY, Sontheimer HW, Bullard DC, Gladson CL. Could labeled neuronal progenitor cells be used to target glioma tumor endothelium? Cancer Bio Ther 2004, 3: 845–846.

    Google Scholar 

  50. Ehtesham M, Yuan X, Kabos P, Chung NH, Liu G, Akasaki Y, et al. Glioma tropic neural stem cells consist of astrocytic precursors and their migratory capacity is mediated by CXCR4. Neoplasia 2004, 6: 287–293.

    Article  PubMed  CAS  Google Scholar 

  51. Lee BC, Lee TH, Avraham S, Avraham HK. Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1alpha in breast cancer cell migration through human brain microvascular endothelial cells. Mol Cancer Res 2004, 2: 327–338.

    PubMed  CAS  Google Scholar 

  52. Liang Z, Wu T, Lou H, Yu X, Taichman RS, Lau SK, et al. Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4. Cancer Res 2004, 64: 4302–4308.

    Article  PubMed  CAS  Google Scholar 

  53. Yoshimura T, Robinson EA, Tanaka S, Appella E, Kuratsu J. Chemokines and central nervous system malignancies. In: Rollins BJ Ed. Chemokines and Cancer. Totowa: Humana Press; 1999, 227–241.

    Google Scholar 

  54. Oh JW, Schwiebert LM, Benveniste EN. Cytokine regulation of CC and CXC chemokine expression by human astrocytes. J Neurovirol 1999, 5: 82–94.

    PubMed  CAS  Google Scholar 

  55. Desbaillets I, Diserens AC, Tribolet N, Hamou MF, Van Meir EG. Upregulation of interleukin 8 by oxygen-deprived cells in glioblastoma suggests a role in leukocyte activation, chemotaxis, and angiogenesis. J Exp Med 1997, 186: 1201–1212.

    Article  PubMed  CAS  Google Scholar 

  56. Noe KH, Cenciarelli C, Moyer SA, Rota PA, Shin ML. Requirements for measles virus induction of RANTES chemokine in human astrocytoma-derived U373 cells. J Virol 1999, 73: 3117–3124.

    PubMed  CAS  Google Scholar 

  57. Fife BT, Huffnagle GB, Kuziel WA, Karpus WJ. CC chemokine receptor 2 is critical for induction of experimental autoimmune encephalomyelitis. J Exp Med 2000, 192: 899–905.

    Article  PubMed  CAS  Google Scholar 

  58. Thibeault I, Laflamme N, Rivest S. Regulation of the gene encoding the monocyte chemoattractant protein (MCP-1) in the mouse and rat brain in response to circulating LPS and proinflammatory cytokines. J Comp Neurol 2001, 434: 461–477.

    Article  PubMed  CAS  Google Scholar 

  59. Dawson J, Miltz W, Mir AK, Wiessner C. Targeting monocyte chemoattractant protein-1 signalling in disease. Expert Opin Ther Targets 2003, 7: 35–48.

    Article  PubMed  CAS  Google Scholar 

  60. Belmadani A, Tran PB, Ren D, Miller RJ. Chemokines regulate the migration of neural progenitors to sites of neuroinflammation. J Neurosci 2006, 26: 3182–3191.

    Article  PubMed  CAS  Google Scholar 

  61. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kitligand. Cell 2002, 109: 625–637.

    Article  PubMed  CAS  Google Scholar 

  62. Sun L, Lee J, Fine HA. Neuronally expressed stem cell factor induces neural stem cell migration to areas of brain injury. J Clin Invest 2004, 113: 1364–1374.

    Article  PubMed  CAS  Google Scholar 

  63. Sun L, Hui AM, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S, et al. Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 2006, 9: 287–300.

    Article  PubMed  CAS  Google Scholar 

  64. Das AV, James J, Zhao X, Rahnenführer J, Ahmad I. Identification of c-Kit receptor as a regulator of adult neural stem cells in the mammalian eye: interactions with Notch signaling. Dev Biol 2004, 273: 87–105.

    Article  PubMed  CAS  Google Scholar 

  65. Louissaint A Jr, Rao S, Leventhal C, Goldman SA. Coordinated interaction of neurogenesis and angiogenesis in the adult song-bird brain. Neuron 2002, 34: 945–960.

    Article  PubMed  CAS  Google Scholar 

  66. Monje ML, Mizumatsu S, Fike JR, Palmer TD. Irradiation induces neural precursor-cell dysfunction. Nat Med 2002, 8: 955–962.

    Article  PubMed  CAS  Google Scholar 

  67. Zhang H, Vutskits L, Pepper MS, Kiss JZ. VEGF is a chemoattractant for FGF-2 stimulated neural progenitors. J Cell Biol 2003, 163: 1375–1384.

    Article  PubMed  CAS  Google Scholar 

  68. Harrigan MR. Angiogenic factors in the central nervous system. Neurosurgery, 2003, 53: 639–660.

    Article  PubMed  Google Scholar 

  69. Schmidt NO, Przylecki W, Yang W, Ziu M, Teng Y, Kim SU, et al. Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor. Neoplasia 2005, 7: 623–629.

    Article  PubMed  CAS  Google Scholar 

  70. Schichor C, Birnbaum T, Etminan N, Schnell O, Grau S, Miebach S, et al. Vascular endothelial growth factor A contributes to glioma-induced migration of human marrow stromal cells (hMSC). Exp Neurol 2006, 199: 301–310.

    Article  PubMed  CAS  Google Scholar 

  71. Birnbaum T, Roider J, Schankin CJ, Padovan CS, Schichor C, Goldbrunner R, et al. Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines. J Neurooncol 2007, 83: 241–247.

    Article  PubMed  CAS  Google Scholar 

  72. Dunn IF, Heese O, Black PM. Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs. J Neurooncol 2000, 50: 121–137.

    Article  PubMed  CAS  Google Scholar 

  73. Chicoine MR, Silbergeld DL. Mitogens as motogens. J Neurooncol 1997, 35: 249–257.

    Article  PubMed  CAS  Google Scholar 

  74. Pedersen PH, Ness GO, Engebraaten O, Bjerkvig R, Lillehaug JR, Laerum OD. Heterogeneous response to the growth factors [EGF, PDGF (bb), TGF-alpha, bFGF, IL-2] on glioma spheroid growth, migration and invasion. Int J Cancer 1994, 56: 255–261.

    Article  PubMed  CAS  Google Scholar 

  75. Boockvar JA, Kapitonov D, Kapoor G, Schouten J, Counelis GJ, Bogler O, et al. Constitutive EGFR signaling confers a motile phenotype to neural stem cells. Mol Cell Neurosci 2003, 24: 1116–1130.

    Article  PubMed  CAS  Google Scholar 

  76. Sato H, Kuwashima N, Sakaida T, Hatano M, Dusak JE, Fellows-Mayle WK, et al. Epidermal growth factor receptor-transfected bone marrow stromal cells exhibit enhanced migratory response and therapeutic potential against murine brain tumors. Cancer Gene Ther 2005, 12: 757–768.

    Article  PubMed  CAS  Google Scholar 

  77. Ziu M, Schmidt NO, Cargioli TG, Aboody KS, Black PM, Carroll RS. Glioma-produced extracellular matrix influences brain tumor tropism of human neural stem cells. J Neurooncol 2006, 79: 125–133.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Hong Zhu  (朱剑虹).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, F., Zhu, JH. Stem cells tropism for malignant gliomas. Neurosci. Bull. 23, 363–369 (2007). https://doi.org/10.1007/s12264-007-0054-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-007-0054-6

Keywords

关键词

CLC number

Navigation