Skip to main content

Advertisement

Log in

Molecular pharmacokinetic determinants of anticancer kinase inhibitors in humans

  • Review
  • Published:
Oncology Reviews

Abstract

This review presents the published data regarding the molecular determinants (drug metabolizing enzymes, drug transporters and orphan nuclear receptors) of approved anticancer kinase inhibitors pharmacokinetics in humans. The clinical impact of these determinants (drug disposition and drug–drug interactions) is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Levitzki A, Gazit A (1995) Tyrosine kinase inhibition: an approach to drug development. Science 267:1782–1788

    Article  PubMed  CAS  Google Scholar 

  2. Krause DS, van Etten RA (2005) Tyrosine kinases as targets for cancer therapy. New Engl J Med 353:172–187

    Article  PubMed  CAS  Google Scholar 

  3. Hartmann JT, Haap M, Kopp HG et al (2009) Tyrosine kinase inhibitors—a review on pharmacology, metabolism and side effects. Curr Drug Metab 10:470–481

    Article  PubMed  CAS  Google Scholar 

  4. Levêque D, Maloisel F (2005) Clinical pharmacokinetics of imatinib mesylate. In Vivo 19:77–84

    PubMed  Google Scholar 

  5. Christopher LJ, Cui D, Wu C et al (2008) Metabolism and disposition of dasatinib after oral administration to humans. Drug Metab Dispos 36:1357–1364

    Article  PubMed  CAS  Google Scholar 

  6. Tanaka C, Yin OQP, Sethuraman V et al (2010) Clinical pharmacokinetics of the BCR-ABL tyrosine kinase inhibitor nilotinib. Clin Pharmacol Ther 87:197–203

    Article  PubMed  CAS  Google Scholar 

  7. Swaisland HC, Smith RP, Laight A et al (2005) Single-dose clinical pharmacokinetics studies of gefitinib. Clin Pharmacokinet 44:1165–1177

    Article  PubMed  CAS  Google Scholar 

  8. Frohna P, Lu J, Eppler S et al (2006) Evaluation of the absolute oral bioavailability and bioequivalence of erlotinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in a randomized, crossover study in healthy subjects. J Clin Pharmacol 46:282–290

    Article  PubMed  CAS  Google Scholar 

  9. Lu JF, Eppler SM, Wolf J et al (2006) Clinical pharmacokinetics of erlotinib in patients with solid tumors and exposure-safety relationship in patients with non-small cell lung cancer. Clin Pharmacol Ther 80:136–145

    Article  PubMed  CAS  Google Scholar 

  10. Chu QSC, Schwartz G, de Bono J et al (2007) Phase I and pharmacokinetic study of lapatinib in combination with capecitabine in patients with advanced solid malignancies. J Clin Oncol 25:3753–3758

    Article  PubMed  CAS  Google Scholar 

  11. Koch KM, Reddy NJ, Cohen RB et al (2009) Effects of food on the relative bioavailability of lapatinib in cancer patients. J Clin Oncol 27:1191–1196

    Article  PubMed  CAS  Google Scholar 

  12. Awada A, Hendlisz A, Gil T et al (2005) Phase I safety and pharmacokinetics of BAY 43-9006 administered for 21 days on/7 days off in patients with advanced, refractory solid tumours. Br J Cancer 92:1855–1861

    Article  PubMed  CAS  Google Scholar 

  13. Strumberg D, Richly H, Hilger RA et al (2005) Phase I clinical and pharmacokinetic study of the novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J Clin Oncol 23:965–972

    Article  PubMed  CAS  Google Scholar 

  14. Khosravan R, Toh M, Garrett M et al (2010) Pharmacokinetics and safety of sunitinib malate in subjects with impaired renal function. J Clin Pharmacol 50:472–481

    Article  PubMed  CAS  Google Scholar 

  15. Heath EI, Chiorean EG, Sweeney CJ et al (2010) A phase I study of the pharmacokinetic and safety profiles of oral pazopanib with a high-fat or low-fat meal in patients with advanced solid tumors. Clin Pharmacol Ther 88:818–823

    Article  PubMed  CAS  Google Scholar 

  16. McKillop D, Hutchinson M, Pardridge EA et al (2004) Metabolic disposition of gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, in rat, dog and man. Xenobiotica 34:917–934

    Article  PubMed  CAS  Google Scholar 

  17. Ling J, Johnson KA, Miao Z et al (2006) Metabolism and excretion of erlotinib, a small molecule inhibitor of epidermal growth factor receptor tyrosine kinase, in healthy male volunteers. Drug Metab Dispos 34:420–426

    PubMed  CAS  Google Scholar 

  18. van Erp NP, Gelderblom H, Karlsson MO et al (2007) Influence of CYP3A4 inhibition on the steady-state pharmacokinetics of imatinib. Clin Cancer Res 13:7394–7400

    Article  PubMed  CAS  Google Scholar 

  19. Nebot N, Crettol S, d’Esposito F et al (2010) Participation of CYP2C8 and CYP3A4 in the N-demethylation of imatinib in human hepatic microsomes. Br J Pharmacol 161:1059–1069

    Article  PubMed  CAS  Google Scholar 

  20. Wang L, Christopher LJ, Cui D et al (2008) Identification of the human enzymes involved in the oxidative metabolism of dasatinib: an effective approach for determining metabolite formation kinetics. Drug Metab Dispos 36:1828–1839

    Article  PubMed  CAS  Google Scholar 

  21. Kamath AV, Wang J, Lee FY et al (2008) Preclinical pharmacokinetics and in vitro metabolism of dasatinib (BMS-354825): a potent oral multi-targeted kinase inhibitor against SRC and BCR-ABL. Cancer Chemother Pharmacol 61:365–376

    Article  PubMed  CAS  Google Scholar 

  22. McKillop D, McCormick AD, Millar A et al (2005) Cytochrome P450-dependent metabolism of gefitinib. Xenobiotica 35:39–50

    Article  PubMed  CAS  Google Scholar 

  23. Li J, Zhao M, He P et al (2007) Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes. Clin Cancer Res 13:3731–3737

    Article  PubMed  CAS  Google Scholar 

  24. Li X, Kamenecka TM, Cameron MD (2009) Bioactivation of the epidermal growth factor receptor inhibitor gefitinib: implications for pulmonary and hepatic toxicities. Chem Res Toxicol 22:1736–1742

    Article  PubMed  CAS  Google Scholar 

  25. Rakhit A, Pantze MP, Fettner S et al (2008) The effects of CYP3A4 inhibition on erlotinib pharmacokinetics: computer-based simulation (SimmCYP™) predicts in vivo metabolic inhibition. Eur J Clin Pharmacol 64:31–41

    Article  PubMed  CAS  Google Scholar 

  26. Peng B, Llyod P, Schran H (2005) Clinical pharmacokinetics of imatinib. Clin Pharmacokinet 44:879–894

    Article  PubMed  CAS  Google Scholar 

  27. Li X, He Y, Ruiz CH et al (2009) Characterization of dasatinib and its structural analogs as CYP3A4 mechanism-based inactivators and the proposed bioactivation pathways. Drug Metab Dispos 37:1242–1250

    Article  PubMed  CAS  Google Scholar 

  28. Swaisland HC, Ranson M, Smith RP et al (2006) Pharmacokinetic drug interactions of gefitinib with rifampicin, itraconazole and metoprolol. Clin Pharmacokinet 44:1067–1081

    Article  Google Scholar 

  29. Li X, Kamenecka TM, Cameron MD (2010) Cytochrome P450-mediated bioactivation of the epidermal growth factor receptor inhibitor erlotinib to a reactive electrophile. Drug Metab Dispos 38:1238–1245

    Article  PubMed  CAS  Google Scholar 

  30. Liu Y, Ramirez J, House L et al (2010) Comparison of the drug–drug interactions potential of erlotinib and gefitinib via inhibition of UDP-glucuronosyltransferases. Drug Metab Dispos 38:32–39

    Article  PubMed  CAS  Google Scholar 

  31. Teng WC, Oh JW, New LS et al (2010) Mechanism-based inactivation of cytochrome P450 3A4 by lapatinib. Mol Pharmacol 78:693–703

    Article  PubMed  CAS  Google Scholar 

  32. Hamada A, Miyano H, Watanabe H et al (2003) Interaction of imatinib mesylate with human P-glycoprotein. J Pharmacol Exp Ther 307:824–828

    Article  PubMed  CAS  Google Scholar 

  33. Thomas J, Wang L, Clark RE et al (2004) Active transport of imatinib into and out of cells: implications for drug resistance. Blood 104:3739–3745

    Article  PubMed  CAS  Google Scholar 

  34. Dai H, Marbach P, Lemaire M et al (2003) Distribution of STI-571 to the brain is limited by P-glycoprotein-mediated efflux. J Pharmacol Exp Ther 304:1085–1092

    Article  PubMed  CAS  Google Scholar 

  35. Houghton PJ, Germain GS, Harwood FC et al (2004) Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN38 in vitro. Cancer Res 64:2333–2337

    Article  PubMed  CAS  Google Scholar 

  36. Hirayama C, Watanabe H, Nakashima R et al (2008) Constitutive overexpression of P-glycoprotein, rather than breast cancer resistance protein or organic cation transporter 1, contributes to acquisition of imatinib-resistance in K562 cells. Pharm Res 25:827–835

    Article  PubMed  CAS  Google Scholar 

  37. Hu S, Franke RM, Filipski KK et al (2008) Interaction of imatinib with human organic ion carriers. Clin Cancer Res 14:3141–3148

    Article  PubMed  CAS  Google Scholar 

  38. Burger H, van Tol H, Boersma AWM et al (2004) Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood 104:2940–2942

    Article  PubMed  CAS  Google Scholar 

  39. Wang L, Giannoudis A, Lane S et al (2008) Expression of the uptake drug transporter hOCT1 is an important clinical determinant of the response to imatinib in chronic myeloid leukemia. Clin Pharmacol Ther 83:258–264

    Article  PubMed  CAS  Google Scholar 

  40. White DL, Dang P, Engler J et al (2010) Functional activity of the OCT-1 protein is predictive of long-term outcome in patients with chronic-phase chronic myeloid leukaemia treated by imatinib. J Clin Oncol 28:2761–2767

    Article  PubMed  CAS  Google Scholar 

  41. Chen Y, Agarwal S, Shaik NM et al (2009) P-glycoprotein and breast cancer resistance protein influence brain distribution of dasatinib. J Pharmacol Exp Ther 330:956–963

    Article  PubMed  CAS  Google Scholar 

  42. Giannoudis A, Davies A, Lucas CM et al (2008) Effective dasatinib uptake may occur without human organic cation transporter 1 (hOCT1): implications for the treatment of imatinib-resistant chronic myeloid leukemia. Blood 112:3348–3354

    Article  PubMed  CAS  Google Scholar 

  43. Hiwase DK, Saunders V, Hewett D et al (2008) Dasatinib cellular uptake and efflux in chronic myeloid leukemia cells: therapeutic implications. Clin Cancer Res 14:3881–3888

    Article  PubMed  CAS  Google Scholar 

  44. Hegedus C, Özvegy-Laczka C, Apati A et al (2009) Interaction of nilotinib, dasatinib and bosutinib with ABCB1 and ABCG2: implications for altered anti-cancer effects and pharmacological properties. Br J Pharmacol 158:1153–1164

    Article  PubMed  CAS  Google Scholar 

  45. White DL, Saunders VA, Dang P et al (2006) OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood 108:697–704

    Article  PubMed  CAS  Google Scholar 

  46. Davies A, Jordanides NE, Giannoudis A et al (2009) Nilotinib concentration in cell lines and primary CD34+ chronic myeloid leukemia cells is not mediated by active uptake or efflux by major transporters. Leukemia 23:1999–2006

    Article  PubMed  CAS  Google Scholar 

  47. Dohse M, Scharenberg C, Shukla S et al (2010) Comparison of ATP-binding cassette transporter interactions with the tyrosine kinase inhibitors imatinib, nilotinib and dasatinib. Drug Metab Dispos 38:1371–1380

    Article  PubMed  CAS  Google Scholar 

  48. Stewart CF, Leggas M, Schuetz JD et al (2004) Gefitinib enhances the antitumor activity and oral bioavailability of irinotecan in mice. Cancer Res 64:7491–7499

    Article  PubMed  CAS  Google Scholar 

  49. Nakamura Y, Oka M, Soda H et al (2005) Gefitinib (“Iressa”, ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor, reverses breast cancer resistance protein/ABCG2-mediated drug resistance. Cancer Res 65:1541–1546

    Article  PubMed  CAS  Google Scholar 

  50. Li J, Cusatis G, Brahmer J et al (2007) Association of variant ABCG2 and the pharmacokinetics of epidermal growth factor receptor tyrosine kinase inhibitors in cancer patients. Cancer Cell Biol 6:432–438

    CAS  Google Scholar 

  51. Azzariti A, Porcelli L, Simone GM et al (2010) Tyrosine kinase inhibitors and multidrug resistance proteins: interactions and biological consequences. Cancer Chemother Pharmacol 65:335–346

    Article  PubMed  CAS  Google Scholar 

  52. Marchetti S, de Vries NA, Buckle T et al (2008) Effect of the ATP-binding cassette drug transporters ABCB1, ABCG2, and ABCC2 on erlotinib hydrochloride (Tarceva) disposition in in vitro and in vivo pharmacokinetic studies employing Bcrp1−/−/Mdr1a/1b−/− (triple-knockout) and wild-type mice. Mol Cancer Ther 7:2280–2287

    Article  PubMed  CAS  Google Scholar 

  53. Polli JW, Humphreys JE, Harmon KA et al (2008) The role of efflux and uptake transporters in N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine (GW572016, Lapatinib) disposition and drug interactions. Drug Metab Dispos 36:695–701

    Article  PubMed  CAS  Google Scholar 

  54. Hu S, Chen Z, Franke R et al (2009) Interaction of the multikinase inhibitors sorafenib and sunitinib with solute carriers and ATP-binding cassette transporters. Clin Cancer Res 15:6062–6069

    Article  PubMed  CAS  Google Scholar 

  55. Gnoth MJ, Sandmann S, Engel K, Radtke M (2010) In vitro to in vivo comparison of the substrate characteristics of sorafenib tosylate towards P-glycoprotein. Drug Metab Dispos 38:1341–1346

    Article  PubMed  CAS  Google Scholar 

  56. Hegedus T, Örfi L, Seprödi A et al (2002) Interaction of tyrosine kinase inhibitors with the human multidrug transporter proteins, MDR1 and MRP1. Biochim Biophys Acta 1587:318–325

    PubMed  CAS  Google Scholar 

  57. Shen T, Kuang YH, Ashby CR Jr et al (2009) Imatinib and nilotinib reverse multidrug resistance in cancer cells by inhibiting the efflux activity of the MRP7 (ABCC10). PLoS One 4:e7520

    Article  PubMed  CAS  Google Scholar 

  58. Tiwari AK, Sodani K, Wang SR et al (2009) Nilotinib (AMN107, Tasigna®) reverses multidrug resistance by inhibiting the activity of the ABCB1/P-gp and ABCG2/BCRP/MXR transporters. Biochem Pharmacol 78:153–161

    Article  PubMed  CAS  Google Scholar 

  59. Brendel C, Scharenberg C, Dohse M et al (2009) Imatinib mesylate and nilotinib (AMN107) exhibit high affinity interaction with ABCG2 on primitive hematopoietic stem cells. Leukemia 21:1267–1275

    Article  CAS  Google Scholar 

  60. Özvegy-Laczka C, Hegedus T, Varady G et al (2004) High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol Pharmacol 65:1485–1495

    Article  PubMed  Google Scholar 

  61. Leggas M, Panetta JC, Zhuang Y et al (2006) Gefitinib modulates the function of multiple ATP-binding cassette transporters in vivo. Cancer Res 66:4802–4807

    Article  PubMed  CAS  Google Scholar 

  62. Takigawara N, Takeyama M, Kozuki T et al (2007) Combination of SN-38 with gefitinib or imatinib overcomes SN-38-resistant small-cell lung cancer cells. Oncol Rep 17:983–987

    Google Scholar 

  63. Yanase K, Tsukahara S, Asada S et al (2004) Gefitinib reverses breast cancer resistance protein-mediated drug resistance. Mol Cancer Ther 3:1119–1125

    PubMed  CAS  Google Scholar 

  64. Shi Z, Peng XX, Kim IW et al (2007) Erlotinib (Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B member 1 and ATP-binding cassette subfamily G member 2-mediated drug resistance. Cancer Res 67:11012–11020

    Article  PubMed  CAS  Google Scholar 

  65. Noguchi K, Kawahara H, Kaji A et al (2009) Substrate-dependent bidirectional modulation of P-glycoprotein-mediated drug resistance by erlotinib. Cancer Sci 100:1701–1707

    Article  PubMed  CAS  Google Scholar 

  66. Dai CL, Tiwari AK, Wu CP et al (2008) Lapatinib (Tykerb, GW572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2. Cancer Res 68:7905–7914

    Article  PubMed  CAS  Google Scholar 

  67. Kuang YH, Shen T, Chen X et al (2010) Lapatinib and erlotinib are potent reversal agents for MRP7 (ABCC10)-mediated multidrug resistance. Biochem Pharmacol 79:154–161

    Article  PubMed  CAS  Google Scholar 

  68. Agarwal S, Sane R, Ohlfest JR et al (2011) The role of the breast cancer resistance protein (ABCG2) in the distribution of sorafenib in the brain. J Pharmacol Exp Ther 336:223–233

    Article  PubMed  CAS  Google Scholar 

  69. Kawahara H, Noguchi K, Katayama K et al (2010) Pharmacological interaction with sunitinib is abolished by a germ-line mutation (1291T>C) of BCRP/ABCG2 gene. Cancer Sci 101:1493–1500

    Article  PubMed  CAS  Google Scholar 

  70. Shukla S, Robey RW, Bates SE et al (2009) Sunitinib (Sutent, SU11248), a small-molecule receptor tyrosine kinase inhibitor, blocks function of the ATP-binding cassette (ABC) transporters P-glycoprotein (ABCB1) and ABCG2. Drug Metab Dispos 37:359–365

    Article  PubMed  CAS  Google Scholar 

  71. Dai CL, Liang YJ, Wang YS et al (2009) Sensitization of ABCG2-overexpressing cells to conventional chemotherapeutic agent by sunitinib was associated with inhibiting the function of ABCG2. Cancer Lett 279:74–83

    Article  PubMed  CAS  Google Scholar 

  72. Harmsen S, Meijerman I, Beijnen JH, Schellens JHM (2009) Nuclear receptor mediated induction of cytochrome P450 3A4 by anticancer drugs: a key role for the pregnane X receptor. Cancer Chemother Pharmacol 64:35–43

    Article  PubMed  CAS  Google Scholar 

  73. Gardner ER, Burger H, van Schaik RH et al (2006) Association of enzyme and transporter genotypes with the pharmacokinetics of imatinib. Clin Pharmacol Ther 80:192–201

    Article  PubMed  CAS  Google Scholar 

  74. Gurney H, Wong M, Balleine RL et al (2007) Imatinib disposition and ABCB1 (MDR1, P-glycoprotein) genotype. Clin Pharmacol Ther 82:33–40

    Article  PubMed  CAS  Google Scholar 

  75. Dulucq S, Bouchet S, Turcq B et al (2008) Multidrug resistance gene (MDR1) polymorphisms are associated with major molecular responses to standard-dose imatinib in chronic myeloid leukaemia. Blood 112:2024–2027

    Article  PubMed  CAS  Google Scholar 

  76. Pétain A, Kattygnarath D, Azard J et al (2008) Population pharmacokinetics and pharmacogenetics of imatinib in children and adults. Clin Cancer Res 14:7102–7109

    Article  PubMed  Google Scholar 

  77. Kim DH, Sriharsha L, Xu W et al (2009) Clinical relevance of a pharmacogenetic approach using multiple candidates genes to predict response and resistance to imatinib therapy in chronic myeloid leukemia. Clin Cancer Res 15:4750–4758

    Article  PubMed  CAS  Google Scholar 

  78. Swaisland HC, Cantarini MV, Fuhr R, Holt A (2006) Exploring the relationship between expression of cytochrome P450 enzymes and gefitinib pharmacokinetics. Clin Pharmacokinet 45:633–644

    Article  PubMed  CAS  Google Scholar 

  79. Bolton AE, Peng B, Hubert M et al (2004) Effect of rifampicin on the pharmacokinetics of imatinib mesylate (Gleevec, STI571) in healthy subjects. Cancer Chemother Pharmacol 53:102–106

    Article  PubMed  CAS  Google Scholar 

  80. Frye RF, Fitzgerald SM, Lagattuta TF et al (2004) Effect of St John’s wort on imatinib mesylate pharmacokinetics. Clin Pharmacol Ther 76:323–329

    Article  PubMed  CAS  Google Scholar 

  81. Tanaka C, Yin OQP, Smith T et al (2011) Effect of rifampin and ketoconazole on the pharmacokinetics of nilotinib in healthy participants. J Clin Pharmacol 51:75–83

    Article  PubMed  CAS  Google Scholar 

  82. Hamilton M, Wolf JL, Rusk J et al (2006) Effects of smoking on the pharmacokinetics of erlotinib. Clin Cancer Res 12:2166–2171

    Article  PubMed  CAS  Google Scholar 

  83. Smith DA, Koch KM, Arya N et al (2009) Effects of ketoconazole and carbamazepine on lapatinib pharmacokinetics in healthy subjects. Br J Clin Pharmacol 67:421–426

    Article  PubMed  CAS  Google Scholar 

  84. Dutreix C, Peng B, Mehring G et al (2004) Pharmacokinetic interaction between ketoconazole and imatinib mesylate (Glivec) in healthy subjects. Cancer Chemother Pharmacol 53:290–294

    Google Scholar 

  85. Gambillara E, Laffite E, Widmer N et al (2005) Severe pustular eruption associated with imatinib and voriconazole in a patient with chronic myeloid leukemia. Dermatology 211:363–365

    Article  PubMed  CAS  Google Scholar 

  86. Egorin MJ, Shah DD, Christner SM et al (2009) Effect of a proton pump inhibitor on the pharmacokinetics of imatinib. Br J Clin Pharmacol 68:370–374

    Article  PubMed  CAS  Google Scholar 

  87. Johnson FM, Agrawal S, Burris H et al (2010) Phase 1 pharmacokinetic and drug-interaction study of dasatinib in patients with advanced solid tumors. Cancer 116:1582–1591

    Article  PubMed  CAS  Google Scholar 

  88. Yin OQP, Gallagher N, Fischer D et al (2010) Effect of the proton pump inhibitor esomeprazole on the oral absorption and pharmacokinetics of nilotinib. J Clin Pharmacol 50:960–967

    Article  PubMed  CAS  Google Scholar 

  89. Yin OQP, Gallagher N, Li A et al (2010) Effect of grapefruit juice on the pharmacokinetics of nilotinib in healthy participants. J Clin Pharmacol 50:188–194

    Article  PubMed  CAS  Google Scholar 

  90. Lathia C, Lettieri J, Cihon F et al (2006) Lack of effect of ketoconazole-mediated CYP3A4 inhibition on sorafenib clinical pharmacokinetics. Cancer Chemother Pharmacol 57:685–692

    Article  PubMed  CAS  Google Scholar 

  91. O’Brien SG, Meinhardt P, Bond E et al (2003) Effect of imatinib mesylate (STI571, Glivec) on the pharmacokinetics of simvastatin, a cytochrome p450 3A4 substrate, in patients with chronic myeloid leukaemia. Br J Cancer 89:1855–1859

    Article  PubMed  CAS  Google Scholar 

  92. Veeraputhiran M, Sundermeyer M (2008) Rhabdomyolysis resulting from pharmacologic interaction between erlotinib and simvastatin. Clin Lung Cancer 9:232–234

    Article  PubMed  CAS  Google Scholar 

  93. Wang Y, Zhou L, Dutreix C et al (2008) Effects of imatinib (Glivec) on the pharmacokinetics of metoprolol, a CYP2D6 substrate, in Chinese patients with chronic myelogenous leukemia. Br J Clin Pharmacol 65:885–892

    Article  PubMed  CAS  Google Scholar 

  94. Grenader T, Gipps M, Shavit L et al (2007) Significant drug interaction: phenytoin toxicity due to erlotinib. Lung Cancer 57:404–406

    Article  PubMed  Google Scholar 

  95. Onoda S, Mitsufuji H, Yanase N et al (2005) Drug interaction between gefitinib and warfarin. Jpn J Clin Oncol 35:478–482

    Article  PubMed  Google Scholar 

  96. Goh BC, Reddy NJ, Dandamudi UB et al (2010) An evaluation of the drug interaction potential of pazopanib, an oral vascular endothelial growth factor receptor tyrosine kinase inhibitor, using a modified Cooperstown 5 + 1 cocktail in patients with advanced solid tumors. Clin Pharmacol Ther 88:652–659

    Article  PubMed  CAS  Google Scholar 

  97. Dragovich T, Huberman M, Von Hoff DD et al (2007) Erlotinib plus gemcitabine in patients with unresectable pancreatic cancer and other solid tumors: phase IB trial. Cancer Chemother Pharmacol 60:295–303

    Article  PubMed  CAS  Google Scholar 

  98. van Hest RM, Schnog JB, van’t Veer MB et al (2008) Extremely slow methotrexate elimination in a patient with t(9;22) positive acute lymphoblastic leukemia treated by imatinib. Am J Hematol 83:757–758

    Article  PubMed  Google Scholar 

  99. Furman WL, Navid F, Daw NC et al (2009) Tyrosine kinase inhibitor enhances the bioavailability of oral irinotecan in pediatric patients with refractory solid tumors. J Clin Oncol 27:4599–4604

    Article  PubMed  CAS  Google Scholar 

  100. Messersmith WA, Laheru DA, Senzer NN et al (2004) Phase I trial of irinotecan, infusional 5-fluorouracil, and leucovorin (FOLFIRI) with erlotinib (OSI-774): early termination due to increased toxicities. Clin Cancer Res 10:6522–6527

    Article  PubMed  CAS  Google Scholar 

  101. Mross K, Steinbild S, Baas F et al (2007) Results from an in vitro and a clinical/pharmacological phase I study with the combination irinotecan and sorafenib. Eur J Cancer 43:55–63

    Article  PubMed  CAS  Google Scholar 

  102. Haura EB, Tanvetyanon T, Chiappori A et al (2010) Phase I/II of the src inhibitor dasatinib in combination with erlotinib in advanced non-small-cell lung cancer. J Clin Oncol 28:1387–1394

    Article  PubMed  CAS  Google Scholar 

  103. Demetri G, Casali PG, Blay JY et al (2009) A phase I study of single-agent nilotinib or in combination with imatinib in patients with imatinib-resistant gastrointestinal stromal tumors. Clin Cancer Res 15:5910–5916

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Levêque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholler, J., Levêque, D. Molecular pharmacokinetic determinants of anticancer kinase inhibitors in humans. Oncol Rev 5, 77–92 (2011). https://doi.org/10.1007/s12156-011-0072-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12156-011-0072-5

Keywords

Navigation