Skip to main content

Advertisement

Log in

Biology of Human Papillomavirus Infections in Head and Neck Carcinogenesis

  • Invited Review
  • Published:
Head and Neck Pathology Aims and scope Submit manuscript

Abstract

The association between human papillomaviruses (HPV) and oral cancer was initially suggested nearly 30 years ago by us. Today, the research interest of head and neck squamous cell carcinoma (HNSCC) has substantially increased. HPV-associated HNSCC is considered a distinct clinical entity with better prognosis than the classical tobacco and alcohol associated cancers. HPV 16 seems to be the main genotype present in HNSCC and it most probably utilizes the same pathways in epithelial cell transformation as established for genital cancer. High-risk HPV E6 and E7 target the well characterized cellular proteins p53 and Rb, respectively. In addition, several other cellular targets of E6 and E7 have been identified. This review gives an overview on the biology of HPV which aids in dissecting the role of HPV in head and neck carcinogenesis. It also summarizes the possible pathways involved in creating new tools for diagnosis and therapy of HPV-associated HNSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. de Villiers EM, Fauquet C, Broker TR, et al. Classification of papillomaviruses. Virology. 2004;324:17–27.

    Article  PubMed  Google Scholar 

  2. Zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2:342–50.

    Article  PubMed  CAS  Google Scholar 

  3. Thierry F. Transcriptional regulation of the papillomavirus oncogenes by cellular and viral transcription factors in cervical carcinoma. Virology. 2009;384:375–9.

    Article  PubMed  CAS  Google Scholar 

  4. Ruutu M, Peitsaro P, Johansson B, Syrjänen S. Transcriptional profiling of a human papillomavirus 33-positive squamous epithelial cell line which acquired a selective growth advantage after viral integration. Int J Cancer. 2002;100:318–26.

    Article  PubMed  CAS  Google Scholar 

  5. Doorbar J. The papillomavirus life cycle. J Clin Virol. 2005;32(Suppl 1):S7–15. Review.

    Article  PubMed  CAS  Google Scholar 

  6. Wang HK, Duffy AA, Broker TR, Chow LT. Robust production and passaging of infectious HPV in squamous epithelium of primary human keratinocytes. Genes Dev. 2009;23:181–94.

    Article  PubMed  CAS  Google Scholar 

  7. Letian T, Tianyu Z. Cellular receptor binding and entry of human papillomavirus. Cellular receptor binding and entry of human papillomavirus. Virol J. 2010;7:2. Review.

    Article  PubMed  Google Scholar 

  8. Kajiji S, Tamura RN, Quaranta V. A novel integrin (alpha 6 beta 4) from human epithelial cells suggests a fourth family of integrin adhesion receptors. EMBO J. 1989;8:673–80.

    PubMed  CAS  Google Scholar 

  9. Shafti-Keramat S, Handisurya A, Kriehuber E, et al. Different heparan sulfate proteoglycans serve as cellular receptors for human papillomaviruses. J Virol. 2003;77:13125–35.

    Article  PubMed  CAS  Google Scholar 

  10. Day PM, Lowy DR, Schiller JT. Papillomaviruses infect cells via a clathrin-dependent pathway. Virology. 2003;307:1–11.

    Article  PubMed  CAS  Google Scholar 

  11. Bousarghin L, Touzé A, Sizaret PY, Coursaget P. Human papillomavirus types 16, 31, and 58 use different endocytosis pathways to enter cells. J Virol. 2003;77:3846–50.

    Article  PubMed  CAS  Google Scholar 

  12. Zhou J, Sun XY, Stenzel DJ, Frazer IH. Expression of vaccinia recombinant HPV 16 L1 and L2 ORF proteins in epithelial cells is sufficient for assembly of HPV virion-like particles. Virology. 1991;185:251–7.

    Article  PubMed  CAS  Google Scholar 

  13. Kämper N, Day PM, Nowak T, et al. A membrane-destabilizing peptide in capsid protein L2 is required for egress of papillomavirus genomes from endosomes. J Virol. 2006;80:759–68.

    Article  PubMed  Google Scholar 

  14. Sapp M, Bienkowska-Haba M. Viral entry mechanisms: human papillomavirus and a long journey from extracellular matrix to the nucleus. FEBS J. 2009;276:7206–16. Review.

    Article  PubMed  CAS  Google Scholar 

  15. Syrjänen S. HPV infections and tonsillar carcinoma. J Clin Pathol. 2004;57:449–55. Review.

    Article  PubMed  Google Scholar 

  16. Kim SH, Koo BS, Kang S, Park K, Kim H, Lee KR, Lee MJ, Kim JM, Choi EC, Cho NH. HPV integration begins in the tonsillar crypt and leads to the alteration of p16, EGFR and c-myc during tumor formation. Int J Cancer. 2007;120:1418–25.

    Article  PubMed  CAS  Google Scholar 

  17. Surján L. Immunohistochemical markers of tonsillar crypt epithelium. Acta Otolaryngol. 1988;105:60–3.

    Article  Google Scholar 

  18. Fujimura Y, Takeda M, Ikai H, Haruma K, Akisada T, Harada T, Sakai T, Ohuchi M. The role of M cells of human nasopharyngeal lymphoid tissue in influenza virus sampling. Virchows Arch. 2004;444:36–42.

    Article  PubMed  Google Scholar 

  19. Ghittoni R, Accardi R, Hasan U, et al. The biological properties of E6 and E7 oncoproteins from human papillomaviruses. Virus Genes. 2010;40:1–13.

    Article  PubMed  CAS  Google Scholar 

  20. Hamid NA, Brown C, Gaston K. The regulation of cell proliferation by the papillomavirus early proteins. Cell Mol Life Sci. 2009;66:1700–17.

    Article  PubMed  CAS  Google Scholar 

  21. Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer. 2010;10:550–60. Review.

    Article  PubMed  CAS  Google Scholar 

  22. Finzer P, Aguilar-Lemarroy A, Rösl F. The role of human papillomavirus oncoproteins E6 and E7 in apoptosis. Cancer Lett. 2002;188:15–24. Review.

    Article  PubMed  CAS  Google Scholar 

  23. Münger K, Baldwin A, Edwards KM, et al. Mechanisms of human papillomavirus-induced oncogenesis. J Virol. 2004;78:11451–60.

    Article  PubMed  Google Scholar 

  24. Javier RT, Rice AP. Emerging theme: cellular PDZ proteins as common targets of pathogenic viruses. J Virol. 2011;85:11544–56. Review.

    Article  PubMed  CAS  Google Scholar 

  25. van den Heuvel S, Dyson NJ. Conserved functions of the pRB and E2F families. Nat Rev Mol Cell Biol. 2008;9:713–24. Review.

    Article  PubMed  Google Scholar 

  26. Scheffner M, Werness BA, Huibregtse JM, et al. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990;63:1129–36.

    Article  PubMed  CAS  Google Scholar 

  27. Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science. 1990;248:76–9.

    Article  PubMed  CAS  Google Scholar 

  28. Schlegel R, Wade-Glass M, Rabson MS, Yang YC. The E5 transforming gene of bovine papillomavirus encodes a small, hydrophobic polypeptide. Science. 1986;233:464–7.

    Article  PubMed  CAS  Google Scholar 

  29. Straight SW, Hinkle PM, Jewers RJ, McCance DJ. The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. J Virol. 1993;67:4521–32.

    PubMed  CAS  Google Scholar 

  30. Disbrow GL, Hanover JA, Schlegel R. Endoplasmic reticulum-localized human papillomavirus type 16 E5 protein alters endosomal pH but not trans-Golgi pH. J Virol. 2005;79:5839–46.

    Article  PubMed  CAS  Google Scholar 

  31. Kirnbauer R, Taub J, Greenstone H, et al. Efficient self-assembly of human papillomavirus type 16 L1 and L1-L2 into virus-like particles. J Virol. 1993;67:6929–36.

    PubMed  CAS  Google Scholar 

  32. Peitsaro P, Ruutu M, Syrjänen S, Johansson B. Divergent expression changes of telomerase and E6/E7 mRNA, following integration of human papillomavirus type 33 in cultured epithelial cells. Scand J Infect Dis. 2004;36:302–4.

    Article  PubMed  CAS  Google Scholar 

  33. Duensing S, Münger K. Mechanisms of genomic instability in human cancer: insights from studies with human papillomavirus oncoproteins. Int J Cancer. 2004;109:157–62.

    Article  PubMed  CAS  Google Scholar 

  34. McLaughlin-Drubin ME, Münger K. The human papillomavirus E7 oncoprotein. Virology. 2009;384:335–44. Review.

    Article  PubMed  CAS  Google Scholar 

  35. White EA, Sowa ME, Tan MJ, et al. Systematic identification of interactions between host cell proteins and E7 oncoproteins from diverse human papillomaviruses. Proc Natl Acad Sci U S A. 2012;109:E260–7.

    Article  PubMed  CAS  Google Scholar 

  36. Maufort JP, Shai A, Pitot HC, Lambert PF. A role for HPV16 E5 in cervical carcinogenesis. Cancer Res. 2010;70:2924–31.

    Article  PubMed  CAS  Google Scholar 

  37. Kanodia S, Fahey LM, Kast M. Mechanisms used by human papillomaviruses to escape the host immune response. Curr Cancer Drug Targets. 2007;7:79–89.

    Article  PubMed  CAS  Google Scholar 

  38. Venuti A, Paolini F, Nasir L, Corteggio A, Roperto S, Campo MS, Borzacchiello G. Papillomavirus E5: the smallest oncoprotein with many functions. Mol Cancer. 2011;10:140. Published online 2011 November 11. doi:10.1186/1476-4598-10-140.

  39. Syrjänen K, Syrjänen S, Lamberg M, et al. Morphological and immunohistochemical evidence suggesting human papillomavirus (HPV) involvement in oral squamous cell carcinogenesis. Int J Oral Surg. 1983;12:418–24.

    Article  PubMed  Google Scholar 

  40. Chang F, Syrjänen S, Nuutinen J, et al. Detection of human papillomavirus (HPV) DNA in oral squamous cell carcinomas by in situ hybridization and polymerase chain reaction. Arch Dermatol Res. 1990;282:493–7.

    Article  PubMed  CAS  Google Scholar 

  41. Hansson BG, Rosenquist K, Antonsson A, et al. Strong association between infection with human papillomavirus and oral and oropharyngeal squamous cell carcinoma: a population-based case–control study in southern Sweden. Acta Otolaryngol. 2005;125:1337–44.

    Article  PubMed  Google Scholar 

  42. Ang KK, Harris J, Wheeler R, et al. Human papillomavirus. N Engl J Med. 2010;363:24–53.

    Article  PubMed  CAS  Google Scholar 

  43. Mehanna H, Beech T, Nicholson T, et al. Prevalence of human papillomavirus in oropharyngeal and nonoropharyngeal head and neck cancer-systematic review and meta-analysis of trends by time and region. Head Neck. 2012. doi:10.1002/hed.22015. [Epub ahead of print].

  44. Syrjänen S, Lodi G, von Bültzingslöwen I, et al. Human papillomaviruses in oral carcinoma and oral potentially malignant disorders: a systematic review. Oral Dis. 2011;Suppl 1:58–72. Review.

    Article  Google Scholar 

  45. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Part B: biological agents LYON, France 2011, Volume 100B pp. 278–80.

  46. Dayyani F, Etzel CJ, Liu M, et al. Meta-analysis of the impact of human papillomavirus (HPV) on cancer risk and overall survival in head and neck squamous cell carcinomas (HNSCC). Head Neck Oncol. 2010;2:15. Published online 2010 June 29. doi:10.1186/1758-3284-2-15.

  47. Fakhry C, Westra WH, Li S, et al. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J Natl Cancer Inst. 2008;100:261–9.

    Article  PubMed  CAS  Google Scholar 

  48. Sinha P, Logan HL, Mendenhall WM. Human papillomavirus, smoking, and head and neck cancer. Am J Otolaryngol. 2012;33:130–6.

    Article  PubMed  Google Scholar 

  49. Jabbar S, Strati K, Shin MK, Pitot HC, Lambert PF. Human papillomavirus type 16 E6 and E7 oncoproteins act synergistically to cause head and neck cancer in mice. Virology. 2010;407:60–7.

    Article  PubMed  CAS  Google Scholar 

  50. Song S, Liem A, Miller JA, Lambert PF. Human papillomavirus types 16 E6 and E7 contribute differently to carcinogenesis. Virology. 2000;267:141–50.

    Article  PubMed  CAS  Google Scholar 

  51. Strati K, Pitot HC, Lambert PF. Identification of biomarkers that distinguish human papillomavirus (HPV)-positive versus HPV-negative head and neck cancers in a mouse model. Proc Natl Acad Sci U S A. 2006;103:14152–7.

    Article  PubMed  CAS  Google Scholar 

  52. Mellin H, Dahlgren L, Munck-Wikland E, Lindholm J, Rabbani H, Kalantari M, Dalianis T. Human papillomavirus type 16 is episomal and a high viral load may be correlated to better prognosis in tonsillar cancer. Int J Cancer. 2002;102:152–8.

    Article  PubMed  CAS  Google Scholar 

  53. Rautava J, Syrjänen S. Human papillomavirus infections in the oral mucosa. J Am Dent Assoc. 2011;142:905–14. Review.

    PubMed  CAS  Google Scholar 

  54. Koskimaa HM, Kurvinen K, Costa S, et al. Molecular markers implicating early malignant events in cervical carcinogenesis. Cancer Epidemiol Biomarkers Prev. 2010;19:2003–12.

    Article  PubMed  CAS  Google Scholar 

  55. Kadaja M, Isok-Paas H, Laos T, Ustav E, Ustav M. Mechanism of genomic instability in cells infected with the high-risk human papillomaviruses. PLoS Pathog. 2009;5(4):e1000397.

    Article  PubMed  Google Scholar 

  56. Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and neck cancer. Nat Rev Cancer. 2011;11:9–22. Review.

    Article  PubMed  CAS  Google Scholar 

  57. Strati K, Lambert PF. Human papillomavirus association with head and neck cancers: understanding virus biology and using it in the development of cancer diagnostics. Expert Opin Med Diagn. 2008;2:11–20.

    Article  PubMed  Google Scholar 

  58. Lewis JS Jr, Thorstad WL, Chernock RD, et al. p16 positive oropharyngeal squamous cell carcinoma: an entity with a favorable prognosis regardless of tumor HPV status. Am J Surg Pathol. 2010;34:1088–96.

    Article  PubMed  Google Scholar 

  59. Saha A, Kaul R, Murakami M, Robertson ES. Tumor viruses and cancer biology: modulating signaling pathways for therapeutic intervention. Cancer Biol Ther. 2010;10:961–78. Review.

    Article  PubMed  CAS  Google Scholar 

  60. Hahn WC, Weinberg RA. Modelling the molecular circuitry of cancer. Nat Rev Cancer. 2002;2(331–341):61.

    Google Scholar 

  61. Rampias T, Boutati E, Pectasides E, et al. Activation of Wnt signaling pathway by human papillomavirus E6 and E7 oncogenes in HPV16-positive oropharyngeal squamous carcinoma cells. Mol Cancer Res. 2010;8:433–43.

    Article  PubMed  CAS  Google Scholar 

  62. Wilting SM, Smeets SJ, Snijders PJ, et al. Genomic profiling identifies common HPV-associated chromosomal alterations in squamous cell carcinomas of cervix and head and neck. BMC Med Genomics. 2009;2:32. doi:10.1186/1755-8794-2-32.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The other author (SS) has received consultancy fees from Sanofi Pasteur MSD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stina Syrjänen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rautava, J., Syrjänen, S. Biology of Human Papillomavirus Infections in Head and Neck Carcinogenesis. Head and Neck Pathol 6 (Suppl 1), 3–15 (2012). https://doi.org/10.1007/s12105-012-0367-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12105-012-0367-2

Keywords

Navigation